Home
Class 9
MATHS
Evaluate: ((7)/(8)x + (4)/(5)y)^(2)...

Evaluate:
`((7)/(8)x + (4)/(5)y)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\left(\frac{7}{8}x + \frac{4}{5}y\right)^{2}\), we will use the formula for the square of a binomial: \[ (a + b)^{2} = a^{2} + b^{2} + 2ab \] **Step 1: Identify \(a\) and \(b\)** In our case, let: - \(a = \frac{7}{8}x\) - \(b = \frac{4}{5}y\) **Step 2: Calculate \(a^{2}\)** Now we compute \(a^{2}\): \[ a^{2} = \left(\frac{7}{8}x\right)^{2} = \frac{7^{2}}{8^{2}}x^{2} = \frac{49}{64}x^{2} \] **Step 3: Calculate \(b^{2}\)** Next, we calculate \(b^{2}\): \[ b^{2} = \left(\frac{4}{5}y\right)^{2} = \frac{4^{2}}{5^{2}}y^{2} = \frac{16}{25}y^{2} \] **Step 4: Calculate \(2ab\)** Now we calculate \(2ab\): \[ 2ab = 2 \cdot \left(\frac{7}{8}x\right) \cdot \left(\frac{4}{5}y\right) = 2 \cdot \frac{7 \cdot 4}{8 \cdot 5}xy = \frac{56}{40}xy = \frac{7}{5}xy \] **Step 5: Combine all parts** Now we can combine all the parts together: \[ \left(\frac{7}{8}x + \frac{4}{5}y\right)^{2} = a^{2} + b^{2} + 2ab = \frac{49}{64}x^{2} + \frac{16}{25}y^{2} + \frac{7}{5}xy \] Thus, the final answer is: \[ \frac{49}{64}x^{2} + \frac{16}{25}y^{2} + \frac{7}{5}xy \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate: ((2x)/(7)- (7y)/(4))^(2)

Evaluate : 3x^(2) + 5xy - 4y^(2) + x^(2) - 8xy - 5y^(2)

Find: (7)/(4) + ((3)/(4) + (5)/(8))

Evaluate : (viii) (7x + 15y) ( 5x - 4y)

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

Evaluate : 7x - 9y + 3 -3x - 5y + 8

Solve for x and y : (y+7)/(5)=(2y-x)/(4)+3x-5 (7-5x)/(2)+(3-4y)/(6)=5y-18

Find the degree of each of the following polynomials : (i) 3x^(4)-x^(2)+8 " " (ii) y^(2)-5y+7 " " (iii) 3x+4 " " (iv) 3 (v) x-2x^(2)+5x^(7) " " (vi) 2y^(2)-5y^(6)+1 " "(vii) x^(3)-1 " " (viii) 3x+5x^(5)+1

If x+ y= (7)/(2) and xy= (5)/(2) , find x-y

If a is a root of x^(2) - 3x-5=0 find the value of a^(4) - 2a^(3) - 7a^(2) -8a