Home
Class 9
MATHS
Evaluate: ((2x)/(7)- (7y)/(4))^(2)...

Evaluate:
`((2x)/(7)- (7y)/(4))^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\left(\frac{2x}{7} - \frac{7y}{4}\right)^{2}\), we will use the formula for the square of a binomial, which states: \[ (a - b)^{2} = a^{2} - 2ab + b^{2} \] Here, we can identify: - \(a = \frac{2x}{7}\) - \(b = \frac{7y}{4}\) Now, we will apply the formula step by step. ### Step 1: Calculate \(a^{2}\) \[ a^{2} = \left(\frac{2x}{7}\right)^{2} = \frac{(2x)^{2}}{7^{2}} = \frac{4x^{2}}{49} \] ### Step 2: Calculate \(b^{2}\) \[ b^{2} = \left(\frac{7y}{4}\right)^{2} = \frac{(7y)^{2}}{4^{2}} = \frac{49y^{2}}{16} \] ### Step 3: Calculate \(2ab\) \[ 2ab = 2 \cdot \frac{2x}{7} \cdot \frac{7y}{4} \] Calculating this step-by-step: - First, multiply the coefficients: \(2 \cdot 2 \cdot 7 = 28\) - Then, multiply the variables: \(xy\) - Finally, divide by the denominators: \(7 \cdot 4 = 28\) Thus, \[ 2ab = \frac{28xy}{28} = xy \] ### Step 4: Combine all parts using the formula Now substituting back into the formula: \[ \left(\frac{2x}{7} - \frac{7y}{4}\right)^{2} = a^{2} - 2ab + b^{2} \] \[ = \frac{4x^{2}}{49} - xy + \frac{49y^{2}}{16} \] ### Final Expression The final evaluated expression is: \[ \frac{4x^{2}}{49} - xy + \frac{49y^{2}}{16} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate: ((7)/(8)x + (4)/(5)y)^(2)

Evaluate : (2)x (1)/(4)-[(-18)/(7)x(-7)/(15)

Evaluate : (ii) (7 x + (2)/(3) y) (7x - (2)/(3) y)

Find the coefficient of x^(-7)" in "((2x^(2))/(3)-(5)/(4x^(5)))^(7)

If (4x+3y)/(4x-3y)=7/4 use the properties to find the value of (2x^2-11y^2)/(2x^2+11y^2)

Find the following products: (i) (x+2)(x+3) (ii) (x+7)(x-2) (iii) y-4)(y-3) (iv) (y-7)(y+3) (vi) (2x-3)(2x+5) (vii) (3x+4)(3x-5)

Find the equation of that diameter which bisects the chord 7x+y-2=0 of the hyperbola (x^(2))/(3)-(y^(2))/(7)=1 .

Simplify: (2x+3y)(3x+4y)-(7x+3y)(x+2y)

Subtract : 7xy + 5x^(2) - 7y^(2) + 3 " from " 7x^(2) - 8xy + 3y^(2) - 5

Find x and y when (7x-2y)/(xy)=5 (8x+7y)/(xy)=15