Home
Class 9
MATHS
Evaluate: ((a)/(2b) + (2b)/(a))^(2)- ((a...

Evaluate: `((a)/(2b) + (2b)/(a))^(2)- ((a)/(2b)- (2b)/(a))^(2)- 4`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\left(\frac{a}{2b} + \frac{2b}{a}\right)^{2} - \left(\frac{a}{2b} - \frac{2b}{a}\right)^{2} - 4\), we can follow these steps: ### Step 1: Define the terms Let \(x = \frac{a}{2b}\) and \(y = \frac{2b}{a}\). ### Step 2: Rewrite the expression The expression can be rewritten as: \[ (x + y)^{2} - (x - y)^{2} - 4 \] ### Step 3: Apply the difference of squares Using the identity \(A^{2} - B^{2} = (A - B)(A + B)\), we can simplify: \[ (x + y)^{2} - (x - y)^{2} = [(x+y) - (x-y)][(x+y) + (x-y)] \] This simplifies to: \[ [2y][2x] = 4xy \] So the expression becomes: \[ 4xy - 4 \] ### Step 4: Substitute back for \(x\) and \(y\) Now substitute back \(x\) and \(y\): \[ xy = \left(\frac{a}{2b}\right)\left(\frac{2b}{a}\right) = 1 \] Thus, we have: \[ 4(1) - 4 = 4 - 4 = 0 \] ### Final Answer The value of the expression is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : (i) ((a)/(2b)+(2b)/(a))^(2)-((a)/(2b)-(2b)/(a))^(2)-4 (ii) (4a+3b)^(2)-(4a-3b)^(2)+48ab

Evaluate : (iii) ((a)/(2b ) + (2b )/( a) ) ( ( a)/( 2b ) - (2b)/( a))

Evaluate : (ii) (a+b) (a-b) (a^2 + b^2)

Evaluate : b^(2)y - 9b^(2)y + 2b^(2)y - 5b^(2)y

Evaluate : (iii) (2a - b) ( 2a + b) (4a^2 + b^2)

Evaluate : (ii) (2a - 5b) ( 2a + 5b) ( 4a^2 + 25b^2)

Find the square of: (3a)/(2b) - (2b)/(3a)

The value of c for which the equation a x^2+2b x+c=0 has equal roots is (a) (b^2)/a (b) (b^2)/(4a) (c) (a^2)/b (d) (a^2)/(4b)

If a=2 and b=-2, find the value of : (i) a^(2)+b^(2) (ii) a^(2)+ab+b^(2) (iii) a^(2)-b^(2)

Find the compound ratio of : (i) 3a : 2b , 2m : n and 4x : 3y (ii) a- b : a + b , (a + b)^(2) : a^(2) + b^(2) and a^(4) - b^(4): (a^(2) - b^(2))^(2) .