Home
Class 9
MATHS
Evaluate: (4a + 3b)^(2)- (4a-3b)^(2) + 4...

Evaluate: `(4a + 3b)^(2)- (4a-3b)^(2) + 48ab`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((4a + 3b)^{2} - (4a - 3b)^{2} + 48ab\), we can follow these steps: ### Step 1: Expand the squares We will use the formula for the square of a binomial, which states that \((x + y)^{2} = x^{2} + 2xy + y^{2}\) and \((x - y)^{2} = x^{2} - 2xy + y^{2}\). 1. Expand \((4a + 3b)^{2}\): \[ (4a + 3b)^{2} = (4a)^{2} + 2(4a)(3b) + (3b)^{2} = 16a^{2} + 24ab + 9b^{2} \] 2. Expand \((4a - 3b)^{2}\): \[ (4a - 3b)^{2} = (4a)^{2} - 2(4a)(3b) + (3b)^{2} = 16a^{2} - 24ab + 9b^{2} \] ### Step 2: Substitute the expanded forms into the expression Now, substitute the expanded forms back into the original expression: \[ (16a^{2} + 24ab + 9b^{2}) - (16a^{2} - 24ab + 9b^{2}) + 48ab \] ### Step 3: Simplify the expression Now, simplify the expression by distributing the negative sign: \[ 16a^{2} + 24ab + 9b^{2} - 16a^{2} + 24ab - 9b^{2} + 48ab \] ### Step 4: Combine like terms Now, combine the like terms: - The \(16a^{2}\) terms cancel out: \[ 16a^{2} - 16a^{2} = 0 \] - The \(9b^{2}\) terms also cancel out: \[ 9b^{2} - 9b^{2} = 0 \] - Combine the \(ab\) terms: \[ 24ab + 24ab + 48ab = 96ab \] ### Final Result Thus, the final result is: \[ \boxed{96ab} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : (iii) (4a - 3b) (2a + 5b)

Evaluate : (viii) (3a^(2) - 4b^(2) ) (8a^(2) - 3b^(2) )

Evaluate : (i) ((a)/(2b)+(2b)/(a))^(2)-((a)/(2b)-(2b)/(a))^(2)-4 (ii) (4a+3b)^(2)-(4a-3b)^(2)+48ab

Evaluate : (ix) (2a - 3b) (3a + 4b)

Evaluate : 3b^(4) when b=2

Simplify (4a+2b)^(3)+(4a-2b)^(3) .

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

Subtract : a^(2) + ab + b^(2) from 4a^(2) - 3ab + 2b^(2)

Multiply : 8ab^(2) by -4a^(3)b^(4)

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity