Home
Class 9
MATHS
If x+ y= (7)/(2) and xy= (5)/(2), find ...

If `x+ y= (7)/(2) and xy= (5)/(2)`, find
`x-y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + y = \frac{7}{2} \) and \( xy = \frac{5}{2} \), we need to find the value of \( x - y \). ### Step-by-Step Solution: 1. **Write down the equations:** We have the following two equations: \[ x + y = \frac{7}{2} \quad \text{(1)} \] \[ xy = \frac{5}{2} \quad \text{(2)} \] 2. **Express \( x \) in terms of \( y \):** From equation (1), we can express \( x \) as: \[ x = \frac{7}{2} - y \quad \text{(3)} \] 3. **Substitute \( x \) in equation (2):** Substitute equation (3) into equation (2): \[ \left(\frac{7}{2} - y\right)y = \frac{5}{2} \] 4. **Expand and rearrange the equation:** Expanding the left side gives: \[ \frac{7}{2}y - y^2 = \frac{5}{2} \] Rearranging this, we get: \[ y^2 - \frac{7}{2}y + \frac{5}{2} = 0 \] 5. **Multiply through by 2 to eliminate fractions:** To make calculations easier, multiply the entire equation by 2: \[ 2y^2 - 7y + 5 = 0 \quad \text{(4)} \] 6. **Factor the quadratic equation:** We need to factor equation (4): \[ (2y - 5)(y - 1) = 0 \] This gives us two possible solutions for \( y \): \[ 2y - 5 = 0 \quad \Rightarrow \quad y = \frac{5}{2} \] \[ y - 1 = 0 \quad \Rightarrow \quad y = 1 \] 7. **Find corresponding \( x \) values:** For \( y = 1 \): \[ x = \frac{7}{2} - 1 = \frac{5}{2} \] For \( y = \frac{5}{2} \): \[ x = \frac{7}{2} - \frac{5}{2} = 1 \] 8. **Calculate \( x - y \):** Now we can find \( x - y \): - If \( y = 1 \) and \( x = \frac{5}{2} \): \[ x - y = \frac{5}{2} - 1 = \frac{3}{2} \] - If \( y = \frac{5}{2} \) and \( x = 1 \): \[ x - y = 1 - \frac{5}{2} = -\frac{3}{2} \] ### Conclusion: Thus, the values of \( x - y \) can be either \( \frac{3}{2} \) or \( -\frac{3}{2} \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x+ y= (7)/(2) and xy= (5)/(2) , find x^(2)- y^(2)

If 5x - 4y = 7 and xy =8 , find : 125x^3 - 64y^3 .

If x^(2) + y^(2) = 37 and xy = 6, find x+y

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If x- y = 7 and x^(3) - y^(3) = 133. find : xy

If x^(2) + y^(2) =37 and xy = 6 : find x-y

If x^(2) + y^(2) = 37 and xy = 6, find x^(2) - y^(2)

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : xy

The adjacent sides of a rectangle are x^(2) - 4xy + 7y^(2) and x^(3) - 5xy^(2) . Find its area.

If x-y +z = 5 and x^(2) +y^(2) +z^(2) = 49, find the value of : zx-xy -yz.