Home
Class 9
MATHS
If a-b= 0.9 and ab= 0.36 find: a^(2) -...

If `a-b= 0.9` and ab= 0.36 find:
`a^(2) -b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( a^2 - b^2 \) given that \( a - b = 0.9 \) and \( ab = 0.36 \). ### Step 1: Use the identity for \( a^2 - b^2 \) We know that: \[ a^2 - b^2 = (a - b)(a + b) \] From the problem, we have \( a - b = 0.9 \). ### Step 2: Find \( a + b \) To find \( a + b \), we can use the identity: \[ (a - b)^2 = a^2 + b^2 - 2ab \] Substituting the known values: \[ (0.9)^2 = a^2 + b^2 - 2(0.36) \] Calculating \( (0.9)^2 \): \[ 0.81 = a^2 + b^2 - 0.72 \] Now, rearranging the equation to find \( a^2 + b^2 \): \[ a^2 + b^2 = 0.81 + 0.72 = 1.53 \] ### Step 3: Use the identity for \( a + b \) We can also use the identity: \[ (a + b)^2 = a^2 + b^2 + 2ab \] Substituting the values we have: \[ (a + b)^2 = 1.53 + 2(0.36) \] Calculating \( 2(0.36) \): \[ 2(0.36) = 0.72 \] So, \[ (a + b)^2 = 1.53 + 0.72 = 2.25 \] Taking the square root to find \( a + b \): \[ a + b = \sqrt{2.25} = 1.5 \] ### Step 4: Substitute back to find \( a^2 - b^2 \) Now we have: - \( a - b = 0.9 \) - \( a + b = 1.5 \) Now we can find \( a^2 - b^2 \): \[ a^2 - b^2 = (a - b)(a + b) = (0.9)(1.5) \] Calculating this: \[ a^2 - b^2 = 1.35 \] ### Final Answer Thus, the value of \( a^2 - b^2 \) is: \[ \boxed{1.35} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a-b= 0.9 and ab= 0.36 find: a+b

If a + b= 9 and ab = -22 , find : a^(2)- b^(2)

If a + b= 9 and ab = -22 , find : a-b

if a +b+c=9 and ab+bc+ca=26,find a^(2)+b^(2)+c^(2).

If a+b=7 and ab=12 find the value of a^(2)-ab+b^(2) .

If a+b+ c=9 and ab + bc +ca = 15 , find : a^2 + b^2 + c^2 .

Find the compounded ratio of: (a-b): (a+b) and (b^(2) + ab): (a^(2) -ab)

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .

If a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9 , find: ab + bc + ca

If A=[(3, 0),(5, 1)] and B=[(-4,2),(1, 0)] Find A^(2)-2AB+B^(2)