Home
Class 9
MATHS
If a-b= 4 and a+b= 6, find: a^(2) + b^...

If `a-b= 4 and a+b= 6`, find:
`a^(2) + b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find \( a^2 + b^2 \) given the equations \( a - b = 4 \) and \( a + b = 6 \), we can follow these steps: ### Step-by-Step Solution: 1. **Write down the equations:** We have: \[ a - b = 4 \quad \text{(1)} \] \[ a + b = 6 \quad \text{(2)} \] 2. **Add the two equations:** By adding equations (1) and (2), we can eliminate \( b \): \[ (a - b) + (a + b) = 4 + 6 \] This simplifies to: \[ 2a = 10 \] 3. **Solve for \( a \):** Divide both sides by 2: \[ a = \frac{10}{2} = 5 \] 4. **Substitute \( a \) back into one of the original equations to find \( b \):** Using equation (2): \[ a + b = 6 \] Substitute \( a = 5 \): \[ 5 + b = 6 \] Solving for \( b \): \[ b = 6 - 5 = 1 \] 5. **Now calculate \( a^2 + b^2 \):** We have \( a = 5 \) and \( b = 1 \): \[ a^2 + b^2 = 5^2 + 1^2 \] Calculate: \[ = 25 + 1 = 26 \] ### Final Answer: Thus, the value of \( a^2 + b^2 \) is \( 26 \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a-b= 4 and a+b= 6 , find: ab

If a+ b = 7 and ab= 6, find a^(2) - b^(2)

If a^(2) +b^(2) = 13 and ab= 6 find: a^(2) - b^(2)

If a+b = 5 and ab = 6 , find a^2 + b^2

If a-b=6 and ab=16 , find a^2 +b^2

If a^(2) +b^(2) = 13 and ab= 6 find: 3(a+b) ^(2) - 2(a-b)^(2)

If a+ b = 4 and ab =3 , find (1)/(b^(2)) + (1)/(a^(2))

If a^(2) +b^(2) = 13 and ab= 6 find: a-b

If a^(2) +b^(2) = 13 and ab= 6 find: a+b

If a^(2) + b^(2) = 41 and ab = 4 , find : (i) a-b