Home
Class 9
MATHS
If a + (1)/(a)= 6 and a ne 0, find a- ...

If `a + (1)/(a)= 6 and a ne 0`, find
`a- (1)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a - \frac{1}{a} \) given that \( a + \frac{1}{a} = 6 \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ a + \frac{1}{a} = 6 \] 2. **Square both sides:** \[ \left( a + \frac{1}{a} \right)^2 = 6^2 \] This simplifies to: \[ a^2 + 2 \cdot a \cdot \frac{1}{a} + \frac{1}{a^2} = 36 \] Since \( a \cdot \frac{1}{a} = 1 \), we have: \[ a^2 + 2 + \frac{1}{a^2} = 36 \] 3. **Rearranging the equation:** \[ a^2 + \frac{1}{a^2} = 36 - 2 \] Thus: \[ a^2 + \frac{1}{a^2} = 34 \] 4. **Now, we need to find \( a - \frac{1}{a} \). We will square this expression:** \[ \left( a - \frac{1}{a} \right)^2 = a^2 - 2 \cdot a \cdot \frac{1}{a} + \frac{1}{a^2} \] This simplifies to: \[ \left( a - \frac{1}{a} \right)^2 = a^2 - 2 + \frac{1}{a^2} \] 5. **Substituting the value of \( a^2 + \frac{1}{a^2} \):** \[ \left( a - \frac{1}{a} \right)^2 = (a^2 + \frac{1}{a^2}) - 2 \] Substituting \( a^2 + \frac{1}{a^2} = 34 \): \[ \left( a - \frac{1}{a} \right)^2 = 34 - 2 = 32 \] 6. **Taking the square root of both sides:** \[ a - \frac{1}{a} = \sqrt{32} \] Simplifying \( \sqrt{32} \): \[ a - \frac{1}{a} = \sqrt{16 \cdot 2} = 4\sqrt{2} \] ### Final Answer: \[ a - \frac{1}{a} = 4\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a- (1)/(a)

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a - (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a + (1)/(a)

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a+ (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)

If a^(2)- 3a + 1= 0 and a ne 0 , find : a+ (1)/(a)