Home
Class 9
MATHS
If a + (1)/(a)= 6 and a ne 0, find a^(...

If `a + (1)/(a)= 6 and a ne 0`, find
`a^(2) - (1)/(a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( a^2 - \frac{1}{a^2} \) given that \( a + \frac{1}{a} = 6 \) and \( a \neq 0 \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ a + \frac{1}{a} = 6 \] 2. **Square both sides to find \( a^2 + 2 + \frac{1}{a^2} \):** \[ \left(a + \frac{1}{a}\right)^2 = 6^2 \] This expands to: \[ a^2 + 2 + \frac{1}{a^2} = 36 \] 3. **Rearrange the equation to isolate \( a^2 + \frac{1}{a^2} \):** \[ a^2 + \frac{1}{a^2} = 36 - 2 \] Simplifying gives: \[ a^2 + \frac{1}{a^2} = 34 \] 4. **Now, use the identity for \( a^2 - \frac{1}{a^2} \):** We know that: \[ a^2 - \frac{1}{a^2} = \left(a + \frac{1}{a}\right)\left(a - \frac{1}{a}\right) \] To find \( a - \frac{1}{a} \), we can use the squared form: \[ a - \frac{1}{a} = \sqrt{(a + \frac{1}{a})^2 - 4} = \sqrt{6^2 - 4} = \sqrt{36 - 4} = \sqrt{32} = 4\sqrt{2} \] 5. **Now substitute back to find \( a^2 - \frac{1}{a^2} \):** \[ a^2 - \frac{1}{a^2} = (a + \frac{1}{a})(a - \frac{1}{a}) = 6 \times 4\sqrt{2} \] Simplifying gives: \[ a^2 - \frac{1}{a^2} = 24\sqrt{2} \] ### Final Answer: \[ a^2 - \frac{1}{a^2} = 24\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a^(2)- (1)/(a^(2))

If a^(2)- 3a + 1= 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a + (1)/(a)= 6 and a ne 0 , find a- (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a^(2)- (1)/(a^(2))

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If x= (1)/(x) - 5 and x ne 5 , find x^(2)- (1)/(x^(2))