Home
Class 9
MATHS
If a- (1)/(a)= 8 and a ne 0, find: a+ ...

If `a- (1)/(a)= 8 and a ne 0`, find:
`a+ (1)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( a + \frac{1}{a} \) given that \( a - \frac{1}{a} = 8 \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ a - \frac{1}{a} = 8 \] 2. **Use the identity for squares:** We know that: \[ (a + \frac{1}{a})^2 - (a - \frac{1}{a})^2 = 4 \] This is derived from the difference of squares formula \( x^2 - y^2 = (x+y)(x-y) \). 3. **Let \( x = a + \frac{1}{a} \) and \( y = a - \frac{1}{a} \):** Thus, we can rewrite the equation as: \[ x^2 - y^2 = 4 \] Substituting \( y = 8 \): \[ x^2 - 8^2 = 4 \] 4. **Calculate \( 8^2 \):** \[ 8^2 = 64 \] So, we have: \[ x^2 - 64 = 4 \] 5. **Rearranging the equation:** \[ x^2 = 64 + 4 \] \[ x^2 = 68 \] 6. **Taking the square root:** \[ x = \sqrt{68} \] We can simplify \( \sqrt{68} \): \[ \sqrt{68} = \sqrt{4 \times 17} = \sqrt{4} \times \sqrt{17} = 2\sqrt{17} \] 7. **Final result:** Therefore, we find: \[ a + \frac{1}{a} = 2\sqrt{17} \] ### Final Answer: \[ a + \frac{1}{a} = 2\sqrt{17} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

If a + (1)/(a)= 6 and a ne 0 , find a- (1)/(a)

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a + (1)/(a)

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a+ (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a- (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a - (1)/(a)

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)