Home
Class 9
MATHS
If a- (1)/(a)= 8 and a ne 0, find: a^(...

If `a- (1)/(a)= 8 and a ne 0`, find:
`a^(2)- (1)/(a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 - \frac{1}{a^2} \) given that \( a - \frac{1}{a} = 8 \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ a - \frac{1}{a} = 8 \] 2. **Use the identity for \( a^2 - \frac{1}{a^2} \):** We know that: \[ a^2 - \frac{1}{a^2} = \left( a - \frac{1}{a} \right)^2 + 2 \] This can be derived from the expansion of \( (a - \frac{1}{a})^2 \). 3. **Square the left-hand side:** \[ \left( a - \frac{1}{a} \right)^2 = 8^2 = 64 \] 4. **Substitute into the identity:** \[ a^2 - \frac{1}{a^2} = 64 + 2 \] 5. **Calculate the final value:** \[ a^2 - \frac{1}{a^2} = 66 \] ### Final Answer: \[ a^2 - \frac{1}{a^2} = 66 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a^(2)- (1)/(a^(2))

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

If a^(2)- 5a-1= 0 and a ne 0 , find : a^(2)- (1)/(a^(2))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

If a + (1)/(a)= 6 and a ne 0 , find a- (1)/(a)

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

If a^(2)- 3a + 1= 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a- (1)/(a)