Home
Class 9
MATHS
If a^(2)- 3a + 1= 0 and a ne 0, find : a...

If `a^(2)- 3a + 1= 0 and a ne 0`, find : `a+ (1)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 - 3a + 1 = 0 \) and find \( a + \frac{1}{a} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the equation: \[ a^2 - 3a + 1 = 0 \] We can use the quadratic formula to find the values of \( a \): \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -3 \), and \( c = 1 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant \( D \): \[ D = b^2 - 4ac = (-3)^2 - 4 \cdot 1 \cdot 1 = 9 - 4 = 5 \] ### Step 3: Substitute into the quadratic formula Now we can substitute the values into the quadratic formula: \[ a = \frac{3 \pm \sqrt{5}}{2} \] ### Step 4: Find \( a + \frac{1}{a} \) Next, we need to find \( a + \frac{1}{a} \). We can express \( \frac{1}{a} \) in terms of \( a \): \[ \frac{1}{a} = \frac{2}{3 \pm \sqrt{5}} \] To simplify \( a + \frac{1}{a} \): \[ a + \frac{1}{a} = a + \frac{2}{3 \pm \sqrt{5}} \] ### Step 5: Rationalize the denominator To simplify \( \frac{2}{3 \pm \sqrt{5}} \), we can multiply the numerator and denominator by the conjugate: \[ \frac{2(3 \mp \sqrt{5})}{(3 \pm \sqrt{5})(3 \mp \sqrt{5})} = \frac{2(3 \mp \sqrt{5})}{9 - 5} = \frac{2(3 \mp \sqrt{5})}{4} = \frac{3 \mp \sqrt{5}}{2} \] ### Step 6: Combine the results Now we can combine the results: \[ a + \frac{1}{a} = \frac{3 \pm \sqrt{5}}{2} + \frac{3 \mp \sqrt{5}}{2} \] This simplifies to: \[ a + \frac{1}{a} = \frac{(3 + 3) + (\sqrt{5} - \sqrt{5})}{2} = \frac{6}{2} = 3 \] ### Final Answer Thus, the value of \( a + \frac{1}{a} \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a + (1)/(a)

If a^(2)- 3a + 1= 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2)- 5a-1= 0 and a ne 0 , find : a - (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2)- 5a-1= 0 and a ne 0 , find : a^(2)- (1)/(a^(2))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a + (1)/(a)

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If a + (1)/(a)= 6 and a ne 0 , find a- (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a- (1)/(a)