Home
Class 9
MATHS
If a^(2)- 3a + 1= 0 and a ne 0, find : a...

If `a^(2)- 3a + 1= 0 and a ne 0`, find : `a^(2) + (1)/(a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 - 3a + 1 = 0 \) and find \( a^2 + \frac{1}{a^2} \), we can follow these steps: ### Step 1: Solve for \( a^2 \) From the equation \( a^2 - 3a + 1 = 0 \), we can express \( a^2 \) in terms of \( a \): \[ a^2 = 3a - 1 \] ### Step 2: Find \( \frac{1}{a} \) To find \( \frac{1}{a} \), we can use the quadratic formula. The roots of the equation \( a^2 - 3a + 1 = 0 \) are given by: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{3 \pm \sqrt{9 - 4}}{2} = \frac{3 \pm \sqrt{5}}{2} \] ### Step 3: Calculate \( a + \frac{1}{a} \) Using the roots, we can find \( a + \frac{1}{a} \): \[ \frac{1}{a} = \frac{2}{3 \pm \sqrt{5}} \] To simplify \( a + \frac{1}{a} \), we can multiply both sides by \( a \): \[ a + \frac{1}{a} = a + \frac{2}{3 \pm \sqrt{5}} = \frac{a(3 \pm \sqrt{5}) + 2}{3 \pm \sqrt{5}} \] ### Step 4: Square \( a + \frac{1}{a} \) Now we can square \( a + \frac{1}{a} \): \[ \left(a + \frac{1}{a}\right)^2 = a^2 + 2 + \frac{1}{a^2} \] Let \( x = a + \frac{1}{a} \), then: \[ x^2 = a^2 + 2 + \frac{1}{a^2} \] Thus, \[ a^2 + \frac{1}{a^2} = x^2 - 2 \] ### Step 5: Find \( a + \frac{1}{a} \) from \( a^2 - 3a + 1 = 0 \) Since we know \( a^2 = 3a - 1 \): \[ x = 3 \] ### Step 6: Substitute \( x \) back to find \( a^2 + \frac{1}{a^2} \) Now substituting \( x \) back: \[ a^2 + \frac{1}{a^2} = 3^2 - 2 = 9 - 2 = 7 \] ### Final Answer Thus, the value of \( a^2 + \frac{1}{a^2} \) is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2)- 5a-1= 0 and a ne 0 , find : a^(2)- (1)/(a^(2))

If a^(2)- 3a + 1= 0 and a ne 0 , find : a+ (1)/(a)

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a + (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a - (1)/(a)

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a^(2)- (1)/(a^(2))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))