Home
Class 9
MATHS
If a^(2)- 5a-1= 0 and a ne 0, find : a- ...

If `a^(2)- 5a-1= 0 and a ne 0`, find : `a- (1)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 - 5a - 1 = 0 \) and find the value of \( a - \frac{1}{a} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the equation: \[ a^2 - 5a - 1 = 0 \] We can use the quadratic formula to find the values of \( a \): \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -5 \), and \( c = -1 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant \( b^2 - 4ac \): \[ (-5)^2 - 4 \cdot 1 \cdot (-1) = 25 + 4 = 29 \] ### Step 3: Substitute into the quadratic formula Now we substitute back into the quadratic formula: \[ a = \frac{5 \pm \sqrt{29}}{2} \] ### Step 4: Find \( a - \frac{1}{a} \) Next, we need to find \( a - \frac{1}{a} \). We can express \( \frac{1}{a} \) as follows: \[ \frac{1}{a} = \frac{2}{5 \pm \sqrt{29}} \] Now, we rationalize the denominator: \[ \frac{1}{a} = \frac{2(5 \mp \sqrt{29})}{(5 + \sqrt{29})(5 - \sqrt{29})} = \frac{2(5 \mp \sqrt{29})}{25 - 29} = \frac{2(5 \mp \sqrt{29})}{-4} = -\frac{1}{2}(5 \mp \sqrt{29}) \] ### Step 5: Combine the results Now, we can find \( a - \frac{1}{a} \): \[ a - \frac{1}{a} = \left(\frac{5 \pm \sqrt{29}}{2}\right) - \left(-\frac{1}{2}(5 \mp \sqrt{29})\right) \] This simplifies to: \[ a - \frac{1}{a} = \frac{5 \pm \sqrt{29}}{2} + \frac{5 \mp \sqrt{29}}{2} = \frac{10}{2} = 5 \] Thus, the final answer is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2)- 5a-1= 0 and a ne 0 , find : a^(2)- (1)/(a^(2))

If a^(2)- 3a + 1= 0 and a ne 0 , find : a+ (1)/(a)

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2)- 3a + 1= 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If a + (1)/(a)= 6 and a ne 0 , find a- (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a- (1)/(a)

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))