Home
Class 9
MATHS
If a^(2)- 5a-1= 0 and a ne 0, find : a^(...

If `a^(2)- 5a-1= 0 and a ne 0`, find : `a^(2)- (1)/(a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 - 5a - 1 = 0 \) and find the value of \( a^2 - \frac{1}{a^2} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the quadratic equation: \[ a^2 - 5a - 1 = 0 \] We can use the quadratic formula: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -5, c = -1 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant: \[ b^2 - 4ac = (-5)^2 - 4 \cdot 1 \cdot (-1) = 25 + 4 = 29 \] ### Step 3: Find the roots Now we substitute the values into the quadratic formula: \[ a = \frac{5 \pm \sqrt{29}}{2} \] ### Step 4: Find \( a^2 + \frac{1}{a^2} \) To find \( a^2 - \frac{1}{a^2} \), we can first find \( a + \frac{1}{a} \). We know: \[ a + \frac{1}{a} = \frac{5 \pm \sqrt{29}}{2} + \frac{2}{5 \pm \sqrt{29}} \] To simplify \( \frac{1}{a} \), we rationalize: \[ \frac{1}{a} = \frac{2}{5 \pm \sqrt{29}} \cdot \frac{5 \mp \sqrt{29}}{5 \mp \sqrt{29}} = \frac{2(5 \mp \sqrt{29})}{(5^2 - 29)} = \frac{2(5 \mp \sqrt{29})}{6} = \frac{5 \mp \sqrt{29}}{3} \] Thus, \[ a + \frac{1}{a} = \frac{5 \pm \sqrt{29}}{2} + \frac{5 \mp \sqrt{29}}{3} \] ### Step 5: Find \( a^2 + \frac{1}{a^2} \) Using the identity: \[ a^2 + \frac{1}{a^2} = (a + \frac{1}{a})^2 - 2 \] We can compute \( a^2 - \frac{1}{a^2} \) directly using: \[ a^2 - \frac{1}{a^2} = (a + \frac{1}{a})(a - \frac{1}{a}) \] ### Step 6: Calculate \( a^2 - \frac{1}{a^2} \) Using the values obtained: \[ a^2 - \frac{1}{a^2} = (a + \frac{1}{a})(a - \frac{1}{a}) = (5)(5) - 2 = 25 - 2 = 23 \] ### Final Result Thus, the value of \( a^2 - \frac{1}{a^2} \) is: \[ \boxed{23} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2)- 3a + 1= 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2)- 5a-1= 0 and a ne 0 , find : a - (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a + (1)/(a)

If a^(2)- 3a + 1= 0 and a ne 0 , find : a+ (1)/(a)

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a^(2)- (1)/(a^(2))

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))