Home
Class 9
MATHS
If 3x + 4y= 16 and xy= 4, find the value...

If `3x + 4y= 16 and xy= 4`, find the value of `9x^(2) + 16y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(9x^2 + 16y^2\) given the equations \(3x + 4y = 16\) and \(xy = 4\). ### Step-by-Step Solution: 1. **Start with the equations:** We have two equations: \[ (1) \quad 3x + 4y = 16 \] \[ (2) \quad xy = 4 \] 2. **Express \(y\) in terms of \(x\):** From equation (2), we can express \(y\) as: \[ y = \frac{4}{x} \] 3. **Substitute \(y\) in equation (1):** Substitute \(y\) in equation (1): \[ 3x + 4\left(\frac{4}{x}\right) = 16 \] Simplifying this gives: \[ 3x + \frac{16}{x} = 16 \] 4. **Multiply through by \(x\) to eliminate the fraction:** Multiply the entire equation by \(x\): \[ 3x^2 + 16 = 16x \] 5. **Rearrange the equation:** Rearranging gives: \[ 3x^2 - 16x + 16 = 0 \] 6. **Use the quadratic formula to solve for \(x\):** The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 3\), \(b = -16\), and \(c = 16\). Plugging in these values: \[ x = \frac{16 \pm \sqrt{(-16)^2 - 4 \cdot 3 \cdot 16}}{2 \cdot 3} \] Simplifying the discriminant: \[ x = \frac{16 \pm \sqrt{256 - 192}}{6} = \frac{16 \pm \sqrt{64}}{6} = \frac{16 \pm 8}{6} \] This gives us two possible values for \(x\): \[ x = \frac{24}{6} = 4 \quad \text{or} \quad x = \frac{8}{6} = \frac{4}{3} \] 7. **Find corresponding values of \(y\):** For \(x = 4\): \[ y = \frac{4}{4} = 1 \] For \(x = \frac{4}{3}\): \[ y = \frac{4}{\frac{4}{3}} = 3 \] 8. **Calculate \(9x^2 + 16y^2\) for both pairs \((x, y)\):** For \((x, y) = (4, 1)\): \[ 9x^2 + 16y^2 = 9(4^2) + 16(1^2) = 9 \cdot 16 + 16 \cdot 1 = 144 + 16 = 160 \] For \((x, y) = \left(\frac{4}{3}, 3\right)\): \[ 9x^2 + 16y^2 = 9\left(\frac{4}{3}\right)^2 + 16(3^2) = 9 \cdot \frac{16}{9} + 16 \cdot 9 = 16 + 144 = 160 \] 9. **Conclusion:** In both cases, we find that: \[ 9x^2 + 16y^2 = 160 \] ### Final Answer: \[ \boxed{160} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If 3x+2y=12 and x y=6, find the value of 9x^2+4y^2

If 3x+2y=12 and x y=6 , find the value of 9x^2+4y^2

If 2x- 3y= 10 and xy= 16 , find the value of 8x^(3)- 27y^(3)

If 2x+3y=8 and x y=2 , find the value of 4x^2+9y^2

If 2x-3y=10 and xy=16 , find the value of 8x^(3)-27y^(3) .

If 3x+2y=12\ a n d\ x y=6, find the value of 9x^2+4y^2dot

If x=4 and y=1, find the value of ((x)/(2)-(y)/(3))((x^(2))/(4)+(xy)/(6)+(y^(2))/(9)) .

If 2x-3y=5 , what is the value of 4x^(2)-12xy+9y^(2) ?

If x= -5 + sqrt(-16) , find the value of x^(4) + 9x^(3) + 35x^(2)-x + 4

If the real numbers x, y, z are such that x^2 + 4y^2 + 16z^2 = 48 and xy + 4yz + 2zx = 24 . what is the value of x^(2) +y^(2) z^(2) =?