Home
Class 9
MATHS
Find the cube of: 2a + (1)/(2a) (a ne 0)...

Find the cube of: `2a + (1)/(2a) (a ne 0)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cube of \(2a + \frac{1}{2a}\), we will use the formula for the cube of a binomial, which is given by: \[ (x + y)^3 = x^3 + y^3 + 3x^2y + 3xy^2 \] Here, we can identify \(x = 2a\) and \(y = \frac{1}{2a}\). ### Step 1: Identify \(x\) and \(y\) Let: - \(x = 2a\) - \(y = \frac{1}{2a}\) ### Step 2: Calculate \(x^3\) and \(y^3\) Now we calculate \(x^3\) and \(y^3\): \[ x^3 = (2a)^3 = 8a^3 \] \[ y^3 = \left(\frac{1}{2a}\right)^3 = \frac{1}{8a^3} \] ### Step 3: Calculate \(3x^2y\) Next, we calculate \(3x^2y\): \[ 3x^2y = 3(2a)^2\left(\frac{1}{2a}\right) = 3(4a^2)\left(\frac{1}{2a}\right) = 3 \cdot 2a = 6a \] ### Step 4: Calculate \(3xy^2\) Now, we calculate \(3xy^2\): \[ 3xy^2 = 3(2a)\left(\frac{1}{2a}\right)^2 = 3(2a)\left(\frac{1}{4a^2}\right) = \frac{3 \cdot 2}{4} = \frac{3}{2} \] ### Step 5: Combine all parts Now we can combine all the parts together: \[ (2a + \frac{1}{2a})^3 = x^3 + y^3 + 3x^2y + 3xy^2 \] Substituting the values we calculated: \[ = 8a^3 + \frac{1}{8a^3} + 6a + \frac{3}{2} \] ### Step 6: Final expression Thus, the final expression for the cube of \(2a + \frac{1}{2a}\) is: \[ (2a + \frac{1}{2a})^3 = 8a^3 + 6a + \frac{1}{8a^3} + \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the cube of: 3a - (1)/(a) (a ne 0)

Find the cube of : x - (1)/(2)

Find the cubes of : 2.1

Find the cubes of : 2.5

Find the cube of : 0.02

Find the cube of: 3a-2b

Find the cubes of : 2(1)/(2)

Find the cube of : 0.8

Find the cube of (2a-3b)

Find the cubes of : 0.12