Home
Class 9
MATHS
Find the cube of: 3a - (1)/(a) (a ne 0)...

Find the cube of: `3a - (1)/(a) (a ne 0)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cube of \( 3a - \frac{1}{a} \), we can use the formula for the cube of a binomial, which is given by: \[ (x + y)^3 = x^3 + y^3 + 3x^2y + 3xy^2 \] In our case, we can identify: - \( x = 3a \) - \( y = -\frac{1}{a} \) Now, we will apply the formula step by step. ### Step 1: Calculate \( x^3 \) and \( y^3 \) 1. Calculate \( x^3 = (3a)^3 \): \[ (3a)^3 = 27a^3 \] 2. Calculate \( y^3 = \left(-\frac{1}{a}\right)^3 \): \[ \left(-\frac{1}{a}\right)^3 = -\frac{1}{a^3} \] ### Step 2: Calculate \( 3x^2y \) 1. Calculate \( x^2 = (3a)^2 \): \[ (3a)^2 = 9a^2 \] 2. Now calculate \( 3x^2y = 3 \cdot 9a^2 \cdot \left(-\frac{1}{a}\right) \): \[ 3 \cdot 9a^2 \cdot \left(-\frac{1}{a}\right) = -27a \] ### Step 3: Calculate \( 3xy^2 \) 1. Calculate \( y^2 = \left(-\frac{1}{a}\right)^2 \): \[ \left(-\frac{1}{a}\right)^2 = \frac{1}{a^2} \] 2. Now calculate \( 3xy^2 = 3 \cdot (3a) \cdot \left(\frac{1}{a^2}\right) \): \[ 3 \cdot 3a \cdot \left(\frac{1}{a^2}\right) = \frac{9}{a} \] ### Step 4: Combine all parts Now we can combine all the parts we calculated: \[ (3a - \frac{1}{a})^3 = x^3 + y^3 + 3x^2y + 3xy^2 \] Substituting the values we found: \[ = 27a^3 - \frac{1}{a^3} - 27a + \frac{9}{a} \] ### Final Result Thus, the final expression for the cube of \( 3a - \frac{1}{a} \) is: \[ 27a^3 - \frac{1}{a^3} - 27a + \frac{9}{a} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the cube of: 2a + (1)/(2a) (a ne 0)

Find the cube of: 3a-2b

Find the cube of : x - (1)/(2)

Find the cube of : 3/7

Find the cube of: 5a +3b

Find the cube of : 0.8

Find the cube of (2a-3b)

Find the cubes of : 2(1)/(2)

Find the cubes of : 0.4

Find the cube of : 0.02