Home
Class 9
MATHS
If a^(2) + (1)/(a^(2)) = 18 and a ne 0, ...

If `a^(2) + (1)/(a^(2)) = 18 and a ne 0`, find:
`a- (1)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a^2 + \frac{1}{a^2} = 18 \) and we need to find \( a - \frac{1}{a} \), we can follow these steps: ### Step 1: Use the identity for \( a - \frac{1}{a} \) We know that: \[ \left( a - \frac{1}{a} \right)^2 = a^2 - 2 + \frac{1}{a^2} \] This can be rearranged to: \[ \left( a - \frac{1}{a} \right)^2 = a^2 + \frac{1}{a^2} - 2 \] ### Step 2: Substitute the given value We are given that: \[ a^2 + \frac{1}{a^2} = 18 \] Substituting this into the identity gives: \[ \left( a - \frac{1}{a} \right)^2 = 18 - 2 \] ### Step 3: Simplify the equation Now, simplifying the right side: \[ \left( a - \frac{1}{a} \right)^2 = 16 \] ### Step 4: Take the square root Taking the square root of both sides, we have: \[ a - \frac{1}{a} = \pm 4 \] ### Conclusion Thus, the values of \( a - \frac{1}{a} \) are: \[ a - \frac{1}{a} = 4 \quad \text{or} \quad a - \frac{1}{a} = -4 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a+ (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a- (1)/(a)

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a + (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a^(2)- (1)/(a^(2))

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

If a^(2)- 5a-1= 0 and a ne 0 , find : a - (1)/(a)

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)

ICSE-EXPANSIONS-Exercise 4(B)
  1. If a^(2) + (1)/(a^(2))= 47 and a ne 0, find: a+ (1)/(a)

    Text Solution

    |

  2. If a^(2) + (1)/(a^(2))= 47 and a ne 0, find: a^(3) + (1)/(a^(3))

    Text Solution

    |

  3. If a^(2) + (1)/(a^(2)) = 18 and a ne 0, find: a- (1)/(a)

    Text Solution

    |

  4. If a^(2) + (1)/(a^(2)) = 18 and a ne 0, find: a^(3)- (1)/(a^(3))

    Text Solution

    |

  5. If a + (1)/(a)= p and a ne 0, then show that: a^(3) + (1)/(a^(3))= p (...

    Text Solution

    |

  6. If a + 2b= 5, then show that: a^(3) + 8b^(3) + 30ab = 125

    Text Solution

    |

  7. If (a + (1)/(a))^(2) = 3 and a ne 0, then show that: a^(3) + (1)/(a^(3...

    Text Solution

    |

  8. If a + 2b + c= 0, then show that: a^(3) + 8b^(3) + c^(3)= 6abc

    Text Solution

    |

  9. Use property to evaluate: 13^(3) + (-8)^(3) + (-5)^(3)

    Text Solution

    |

  10. Use property to evaluate: 7^(3) + 3^(3) + (-10)^(3)

    Text Solution

    |

  11. Use property to evaluate: 9^(3) -5^(3) - 4^(3)

    Text Solution

    |

  12. Use property to evaluate: 38^(3) + (-26)^(3) + (-12)^(3)

    Text Solution

    |

  13. If a ne 0 and a - (1)/(a)= 3, find : a^(2) + (1)/(a^(2))

    Text Solution

    |

  14. If a ne 0 and a - (1)/(a)= 3, find : a^(3)- (1)/(a^(3))

    Text Solution

    |

  15. If a ne 0 and a - (1)/(a)= 4, find a^(2) + (1)/(a^(2))

    Text Solution

    |

  16. If a ne 0 and a - (1)/(a)= 4, find a^(4) + (1)/(a^(4))

    Text Solution

    |

  17. If a ne 0 and a - (1)/(a)= 4, find a^(3)- (1)/(a^(3))

    Text Solution

    |

  18. If x ne 0 and x + (1)/(x) = 2, then show that: x^(2)+ (1)/(x^(2))= x^(...

    Text Solution

    |

  19. If 2x- 3y= 10 and xy= 16, find the value of 8x^(3)- 27y^(3)

    Text Solution

    |

  20. Expand: (3x+ 5y+ 2z) (3x- 5y + 2z)

    Text Solution

    |