Home
Class 9
MATHS
If a^(2) + (1)/(a^(2)) = 18 and a ne 0, ...

If `a^(2) + (1)/(a^(2)) = 18 and a ne 0`, find:
`a^(3)- (1)/(a^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a^2 + \frac{1}{a^2} = 18 \) and we need to find \( a^3 - \frac{1}{a^3} \), we can follow these steps: ### Step 1: Find \( a - \frac{1}{a} \) We know that: \[ a^2 + \frac{1}{a^2} = (a - \frac{1}{a})^2 + 2 \] So we can rearrange this to find \( a - \frac{1}{a} \): \[ (a - \frac{1}{a})^2 = a^2 + \frac{1}{a^2} - 2 \] Substituting the known value: \[ (a - \frac{1}{a})^2 = 18 - 2 = 16 \] Taking the square root: \[ a - \frac{1}{a} = \sqrt{16} = 4 \quad \text{(since } a \neq 0\text{)} \] ### Step 2: Find \( a^3 - \frac{1}{a^3} \) We can use the identity: \[ a^3 - \frac{1}{a^3} = (a - \frac{1}{a}) \left( (a - \frac{1}{a})^2 + 3 \right) \] Substituting the value we found: \[ a^3 - \frac{1}{a^3} = 4 \left( 4^2 + 3 \right) \] Calculating \( 4^2 + 3 \): \[ 4^2 = 16 \quad \Rightarrow \quad 16 + 3 = 19 \] Now substituting back: \[ a^3 - \frac{1}{a^3} = 4 \times 19 = 76 \] ### Final Answer: Thus, the value of \( a^3 - \frac{1}{a^3} \) is \( \boxed{76} \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a^(2)- (1)/(a^(2))

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a+ (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a- (1)/(a)

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

If a^(2)- 5a-1= 0 and a ne 0 , find : a^(2)- (1)/(a^(2))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a + (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)

ICSE-EXPANSIONS-Exercise 4(B)
  1. If a^(2) + (1)/(a^(2))= 47 and a ne 0, find: a^(3) + (1)/(a^(3))

    Text Solution

    |

  2. If a^(2) + (1)/(a^(2)) = 18 and a ne 0, find: a- (1)/(a)

    Text Solution

    |

  3. If a^(2) + (1)/(a^(2)) = 18 and a ne 0, find: a^(3)- (1)/(a^(3))

    Text Solution

    |

  4. If a + (1)/(a)= p and a ne 0, then show that: a^(3) + (1)/(a^(3))= p (...

    Text Solution

    |

  5. If a + 2b= 5, then show that: a^(3) + 8b^(3) + 30ab = 125

    Text Solution

    |

  6. If (a + (1)/(a))^(2) = 3 and a ne 0, then show that: a^(3) + (1)/(a^(3...

    Text Solution

    |

  7. If a + 2b + c= 0, then show that: a^(3) + 8b^(3) + c^(3)= 6abc

    Text Solution

    |

  8. Use property to evaluate: 13^(3) + (-8)^(3) + (-5)^(3)

    Text Solution

    |

  9. Use property to evaluate: 7^(3) + 3^(3) + (-10)^(3)

    Text Solution

    |

  10. Use property to evaluate: 9^(3) -5^(3) - 4^(3)

    Text Solution

    |

  11. Use property to evaluate: 38^(3) + (-26)^(3) + (-12)^(3)

    Text Solution

    |

  12. If a ne 0 and a - (1)/(a)= 3, find : a^(2) + (1)/(a^(2))

    Text Solution

    |

  13. If a ne 0 and a - (1)/(a)= 3, find : a^(3)- (1)/(a^(3))

    Text Solution

    |

  14. If a ne 0 and a - (1)/(a)= 4, find a^(2) + (1)/(a^(2))

    Text Solution

    |

  15. If a ne 0 and a - (1)/(a)= 4, find a^(4) + (1)/(a^(4))

    Text Solution

    |

  16. If a ne 0 and a - (1)/(a)= 4, find a^(3)- (1)/(a^(3))

    Text Solution

    |

  17. If x ne 0 and x + (1)/(x) = 2, then show that: x^(2)+ (1)/(x^(2))= x^(...

    Text Solution

    |

  18. If 2x- 3y= 10 and xy= 16, find the value of 8x^(3)- 27y^(3)

    Text Solution

    |

  19. Expand: (3x+ 5y+ 2z) (3x- 5y + 2z)

    Text Solution

    |

  20. Expand: (3x- 5y - 2z) (3x- 5y + 2z)

    Text Solution

    |