Home
Class 9
MATHS
If a ne 0 and a - (1)/(a)= 4, find a^(...

If `a ne 0 and a - (1)/(a)= 4`, find
`a^(4) + (1)/(a^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a - \frac{1}{a} = 4 \) and we need to find \( a^4 + \frac{1}{a^4} \), we can follow these steps: ### Step 1: Square both sides of the equation We start with the equation: \[ a - \frac{1}{a} = 4 \] Now, we square both sides: \[ \left(a - \frac{1}{a}\right)^2 = 4^2 \] ### Step 2: Expand the left side using the identity Using the identity \( (x - y)^2 = x^2 - 2xy + y^2 \), we can expand the left side: \[ a^2 - 2a\left(\frac{1}{a}\right) + \left(\frac{1}{a}\right)^2 = 16 \] This simplifies to: \[ a^2 - 2 + \frac{1}{a^2} = 16 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( a^2 + \frac{1}{a^2} \): \[ a^2 + \frac{1}{a^2} - 2 = 16 \] Adding 2 to both sides gives: \[ a^2 + \frac{1}{a^2} = 16 + 2 = 18 \] ### Step 4: Square \( a^2 + \frac{1}{a^2} \) to find \( a^4 + \frac{1}{a^4} \) Next, we square \( a^2 + \frac{1}{a^2} \): \[ \left(a^2 + \frac{1}{a^2}\right)^2 = 18^2 \] Expanding the left side using the identity \( (x + y)^2 = x^2 + 2xy + y^2 \): \[ a^4 + 2 + \frac{1}{a^4} = 324 \] Now, we can rearrange this to find \( a^4 + \frac{1}{a^4} \): \[ a^4 + \frac{1}{a^4} = 324 - 2 = 322 \] ### Final Answer Thus, the value of \( a^4 + \frac{1}{a^4} \) is: \[ \boxed{322} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a ne 0 and a - (1)/(a)= 4 , find a^(2) + (1)/(a^(2))

If a ne 0 and a - (1)/(a)= 4 , find a^(3)- (1)/(a^(3))

If a+ (1)/(a) = 2 , find : (ii) a^4 + (1)/( a^4)

If a^(2)- 3a + 1= 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If x ne 0 and x=2 , find x^(4) + (1)/(x^(4))

If a^(2)- 5a-1= 0 and a ne 0 , find : a^(2)- (1)/(a^(2))

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a-(1)/(a)=3 .Find the value of a^(4)+(1)/(a^(4))

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If a + (1)/(a)= 6 and a ne 0 , find a- (1)/(a)

ICSE-EXPANSIONS-Exercise 4(B)
  1. If a + 2b + c= 0, then show that: a^(3) + 8b^(3) + c^(3)= 6abc

    Text Solution

    |

  2. Use property to evaluate: 13^(3) + (-8)^(3) + (-5)^(3)

    Text Solution

    |

  3. Use property to evaluate: 7^(3) + 3^(3) + (-10)^(3)

    Text Solution

    |

  4. Use property to evaluate: 9^(3) -5^(3) - 4^(3)

    Text Solution

    |

  5. Use property to evaluate: 38^(3) + (-26)^(3) + (-12)^(3)

    Text Solution

    |

  6. If a ne 0 and a - (1)/(a)= 3, find : a^(2) + (1)/(a^(2))

    Text Solution

    |

  7. If a ne 0 and a - (1)/(a)= 3, find : a^(3)- (1)/(a^(3))

    Text Solution

    |

  8. If a ne 0 and a - (1)/(a)= 4, find a^(2) + (1)/(a^(2))

    Text Solution

    |

  9. If a ne 0 and a - (1)/(a)= 4, find a^(4) + (1)/(a^(4))

    Text Solution

    |

  10. If a ne 0 and a - (1)/(a)= 4, find a^(3)- (1)/(a^(3))

    Text Solution

    |

  11. If x ne 0 and x + (1)/(x) = 2, then show that: x^(2)+ (1)/(x^(2))= x^(...

    Text Solution

    |

  12. If 2x- 3y= 10 and xy= 16, find the value of 8x^(3)- 27y^(3)

    Text Solution

    |

  13. Expand: (3x+ 5y+ 2z) (3x- 5y + 2z)

    Text Solution

    |

  14. Expand: (3x- 5y - 2z) (3x- 5y + 2z)

    Text Solution

    |

  15. The sum of two numbers is 9 and their product is 20. Find the sum of t...

    Text Solution

    |

  16. The sum of two numbers is 9 and their product is 20. Find the sum of t...

    Text Solution

    |

  17. Two positive numbers x and y are such that x gt y. If the difference o...

    Text Solution

    |

  18. Two positive numbers x and y are such that x gt y. If the difference o...

    Text Solution

    |

  19. Two positive numbers x and y are such that x gt y. If the difference o...

    Text Solution

    |

  20. If 4x^(2) + y^(2)=a and xy= b, find the value of 2x+y

    Text Solution

    |