Home
Class 9
MATHS
Simplity: (x-6) (x-4) (x+2)...

Simplity: `(x-6) (x-4) (x+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((x-6)(x-4)(x+2)\), we will follow these steps: ### Step 1: Multiply the first two factors We start by multiplying the first two brackets: \((x-6)\) and \((x-4)\). \[ (x-6)(x-4) = x^2 - 4x - 6x + 24 = x^2 - 10x + 24 \] ### Step 2: Multiply the result with the third factor Now, we take the result from Step 1, which is \((x^2 - 10x + 24)\), and multiply it by the third factor \((x+2)\). \[ (x^2 - 10x + 24)(x + 2) \] We will distribute each term in \((x^2 - 10x + 24)\) by \((x + 2)\): 1. Multiply \(x^2\) by \((x + 2)\): \[ x^2 \cdot x + x^2 \cdot 2 = x^3 + 2x^2 \] 2. Multiply \(-10x\) by \((x + 2)\): \[ -10x \cdot x - 10x \cdot 2 = -10x^2 - 20x \] 3. Multiply \(24\) by \((x + 2)\): \[ 24 \cdot x + 24 \cdot 2 = 24x + 48 \] ### Step 3: Combine all the terms Now, we combine all the terms from the above multiplications: \[ x^3 + 2x^2 - 10x^2 - 20x + 24x + 48 \] Combine like terms: - For \(x^2\) terms: \(2x^2 - 10x^2 = -8x^2\) - For \(x\) terms: \(-20x + 24x = 4x\) So, we have: \[ x^3 - 8x^2 + 4x + 48 \] ### Final Result Thus, the simplified expression is: \[ \boxed{x^3 - 8x^2 + 4x + 48} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify: 5+[x-{2y-(6x+y-4)+2x^2}-(x^2-2y)]

Simplify: 9x^4(2x^3-5x^4)xx5x^6(x^4-3x^2)

Simplify: 4x^(3)-2x^(2)+5x-1+8x+x^(2)-6x^(3)+7-6x+3-3x^(2)-x^(3)

Solve: (x-6)/4-(x-4)/6=1-x/(10)

int((x^(- 6)-64)/(4+2x^(- 1)+x^(- 2))*(x^2)/(4-4x^(- 1)+x^(- 2))-(4x^2(2x+1))/(1-2x))dx

Solve: (6x^2+\ 13 x-4)/(2x+5)=(12 x^2+5x-2)/(4x+3)

lim_(x to 0) ((2x-3)(3x-4))/((4x-5)(5x -6))

If log _( 0.6) (log _(6) ((x ^(2) +x)/(x +4))) lt 0, then complete set of value of 'x' is:

Evaluate int(x^(6)+x^(4)+x^(2))sqrt(2x^(4)+3x^(2)+6)dx .

Find the products: (3/x-2x^2)(9/(x^2)+4x^4+6x)