Home
Class 9
MATHS
Simplity: (x-6) (x-4) (x-2)...

Simplity: `(x-6) (x-4) (x-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((x-6)(x-4)(x-2)\), we will follow these steps: ### Step 1: Multiply the first two factors We start by multiplying the first two factors: \((x-6)\) and \((x-4)\). \[ (x-6)(x-4) = x^2 - 4x - 6x + 24 = x^2 - 10x + 24 \] ### Step 2: Multiply the result with the third factor Now we take the result from Step 1, which is \((x^2 - 10x + 24)\), and multiply it by the third factor \((x-2)\). \[ (x^2 - 10x + 24)(x - 2) \] We will distribute each term in the first polynomial by each term in the second polynomial. 1. Multiply \(x^2\) by \((x - 2)\): \[ x^2 \cdot x - x^2 \cdot 2 = x^3 - 2x^2 \] 2. Multiply \(-10x\) by \((x - 2)\): \[ -10x \cdot x + 10x \cdot 2 = -10x^2 + 20x \] 3. Multiply \(24\) by \((x - 2)\): \[ 24 \cdot x - 24 \cdot 2 = 24x - 48 \] ### Step 3: Combine all the terms Now we combine all the terms obtained from the multiplication: \[ x^3 - 2x^2 - 10x^2 + 20x + 24x - 48 \] Combine like terms: \[ x^3 + (-2x^2 - 10x^2) + (20x + 24x) - 48 = x^3 - 12x^2 + 44x - 48 \] ### Final Result Thus, the simplified form of \((x-6)(x-4)(x-2)\) is: \[ \boxed{x^3 - 12x^2 + 44x - 48} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify: 5+[x-{2y-(6x+y-4)+2x^2}-(x^2-2y)]

Simplify: 9x^4(2x^3-5x^4)xx5x^6(x^4-3x^2)

lim_(x to 0) ((2x-3)(3x-4))/((4x-5)(5x -6))

Simplify: 4x^(3)-2x^(2)+5x-1+8x+x^(2)-6x^(3)+7-6x+3-3x^(2)-x^(3)

Solve: (x-6)/4-(x-4)/6=1-x/(10)

int((x^(- 6)-64)/(4+2x^(- 1)+x^(- 2))*(x^2)/(4-4x^(- 1)+x^(- 2))-(4x^2(2x+1))/(1-2x))dx

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

Solve: (6x^2+\ 13 x-4)/(2x+5)=(12 x^2+5x-2)/(4x+3)

Evaluate int(x^(6)+x^(4)+x^(2))sqrt(2x^(4)+3x^(2)+6)dx .

Find the products: (3/x-2x^2)(9/(x^2)+4x^4+6x)