Home
Class 9
MATHS
Simplity: (x+6) (x-4) (x-2)...

Simplity: `(x+6) (x-4) (x-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((x + 6)(x - 4)(x - 2)\), we can follow these steps: ### Step 1: Multiply the first two brackets We start by multiplying the first two expressions, \((x + 6)\) and \((x - 4)\). \[ (x + 6)(x - 4) = x^2 - 4x + 6x - 24 \] Combining like terms, we get: \[ x^2 + 2x - 24 \] ### Step 2: Multiply the result with the third bracket Now, we take the result from Step 1, which is \((x^2 + 2x - 24)\), and multiply it by the third bracket \((x - 2)\). \[ (x^2 + 2x - 24)(x - 2) \] Distributing each term in the first bracket by each term in the second bracket: 1. \(x^2 \cdot x = x^3\) 2. \(x^2 \cdot (-2) = -2x^2\) 3. \(2x \cdot x = 2x^2\) 4. \(2x \cdot (-2) = -4x\) 5. \(-24 \cdot x = -24x\) 6. \(-24 \cdot (-2) = 48\) Now, combining all these results: \[ x^3 - 2x^2 + 2x^2 - 4x - 24x + 48 \] ### Step 3: Combine like terms Now we can combine the like terms: \[ x^3 + ( -2x^2 + 2x^2) + (-4x - 24x) + 48 \] This simplifies to: \[ x^3 + 0x^2 - 28x + 48 \] Thus, the final simplified expression is: \[ x^3 - 28x + 48 \] ### Final Answer: \[ x^3 - 28x + 48 \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify: 9x^4(2x^3-5x^4)xx5x^6(x^4-3x^2)

Simplify: 5+[x-{2y-(6x+y-4)+2x^2}-(x^2-2y)]

Solve: (6x^2+\ 13 x-4)/(2x+5)=(12 x^2+5x-2)/(4x+3)

lim_(x to 0) ((2x-3)(3x-4))/((4x-5)(5x -6))

Simplify: 4x^(3)-2x^(2)+5x-1+8x+x^(2)-6x^(3)+7-6x+3-3x^(2)-x^(3)

int((x^(- 6)-64)/(4+2x^(- 1)+x^(- 2))*(x^2)/(4-4x^(- 1)+x^(- 2))-(4x^2(2x+1))/(1-2x))dx

Solve: (x-6)/4-(x-4)/6=1-x/(10)

If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+(6)/((x-1)^(4)) , then the value of k is

Evaluate int(x^(6)+x^(4)+x^(2))sqrt(2x^(4)+3x^(2)+6)dx .

Solve (6x^2-5x-3)/(x^2-2x+6)le 4