Home
Class 9
MATHS
Simplify using following identiy: (a +...

Simplify using following identiy:
`(a +- b) (a^(2) ab + b^(2)) = a^(3) +- b^(3)`
`(2x + 3y) (4x^(2) - 6xy + 9y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((2x + 3y)(4x^2 - 6xy + 9y^2)\) using the identity \((a \pm b)(a^2 \mp ab + b^2) = a^3 \pm b^3\), we can follow these steps: ### Step 1: Identify \(a\) and \(b\) In our case, we can identify: - \(a = 2x\) - \(b = 3y\) ### Step 2: Check the format of the second term We need to check if the second term \(4x^2 - 6xy + 9y^2\) matches the format \(a^2 - ab + b^2\): - \(a^2 = (2x)^2 = 4x^2\) - \(b^2 = (3y)^2 = 9y^2\) - \(ab = (2x)(3y) = 6xy\) Thus, \(4x^2 - 6xy + 9y^2\) matches the format \(a^2 - ab + b^2\). ### Step 3: Apply the identity Since we have confirmed that the expression fits the identity, we can apply it: \[ (2x + 3y)(4x^2 - 6xy + 9y^2) = (2x)^3 + (3y)^3 \] ### Step 4: Calculate \(a^3\) and \(b^3\) Now, we calculate \(a^3\) and \(b^3\): - \(a^3 = (2x)^3 = 8x^3\) - \(b^3 = (3y)^3 = 27y^3\) ### Step 5: Combine the results Putting it all together, we have: \[ (2x + 3y)(4x^2 - 6xy + 9y^2) = 8x^3 + 27y^3 \] ### Final Answer Thus, the simplified expression is: \[ \boxed{8x^3 + 27y^3} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify using following identiy: (a +- b) (a^(2) ab + b^(2)) = a^(3) +- b^(3) (3x- (5)/(x)) (9x^(2) + 15+ (25)/(x^(2)))

Simplify using following identiy: (a +- b) (a^(2) ab + b^(2)) = a^(3) +- b^(3) ((a)/(3)-3b) ((a^(2))/(9) + ab + 9b^(2))

Simplify the following (2x - 3y ) (4x - 5y)

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

Simplify the following : 2x^(2) + 3y^(2) - 5xy +5x^(2) - y^(2) + 6xy - 3x^(2)

Simplify the following : 3xy^(2) - 5x^(2)y + 7xy - 9xy^(2) - 4xy + 6x^(2)y

Simplify the following (2x^(2) - 3xy) (4x+5y)

Simplify the following (2x - 3y) (2x+3y)

Simplify each of the following: (i) 7x^3y+9y x^3 (ii) 12 a^2b+3b a^2

Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)