Home
Class 9
MATHS
Simplify using following identiy: (a +...

Simplify using following identiy:
`(a +- b) (a^(2) ab + b^(2)) = a^(3) +- b^(3)`
`(3x- (5)/(x)) (9x^(2) + 15+ (25)/(x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((3x - \frac{5}{x})(9x^2 + 15 + \frac{25}{x^2})\) using the identity \((a - b)(a^2 + ab + b^2) = a^3 - b^3\), we will follow these steps: ### Step 1: Identify \(a\) and \(b\) In our case, we can identify: - \(a = 3x\) - \(b = \frac{5}{x}\) ### Step 2: Verify the second term Now, we need to check if the second term \(9x^2 + 15 + \frac{25}{x^2}\) matches the form \(a^2 + ab + b^2\): - Calculate \(a^2\): \[ a^2 = (3x)^2 = 9x^2 \] - Calculate \(ab\): \[ ab = (3x) \left(\frac{5}{x}\right) = 15 \] - Calculate \(b^2\): \[ b^2 = \left(\frac{5}{x}\right)^2 = \frac{25}{x^2} \] Now, we can see that: \[ a^2 + ab + b^2 = 9x^2 + 15 + \frac{25}{x^2} \] This confirms that the second term matches the required form. ### Step 3: Apply the identity Now that we have confirmed the identity, we can apply it: \[ (3x - \frac{5}{x})(9x^2 + 15 + \frac{25}{x^2}) = (3x)^3 - \left(\frac{5}{x}\right)^3 \] ### Step 4: Calculate \(a^3\) and \(b^3\) - Calculate \(a^3\): \[ (3x)^3 = 27x^3 \] - Calculate \(b^3\): \[ \left(\frac{5}{x}\right)^3 = \frac{125}{x^3} \] ### Step 5: Write the final expression Substituting back into the equation gives us: \[ (3x - \frac{5}{x})(9x^2 + 15 + \frac{25}{x^2}) = 27x^3 - \frac{125}{x^3} \] ### Final Answer Thus, the simplified expression is: \[ 27x^3 - \frac{125}{x^3} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify using following identiy: (a +- b) (a^(2) ab + b^(2)) = a^(3) +- b^(3) (2x + 3y) (4x^(2) - 6xy + 9y^(2))

Simplify using following identiy: (a +- b) (a^(2) ab + b^(2)) = a^(3) +- b^(3) ((a)/(3)-3b) ((a^(2))/(9) + ab + 9b^(2))

Simplify the following : 2x^(2) + 3y^(2) - 5xy +5x^(2) - y^(2) + 6xy - 3x^(2)

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

Simplify each of the following: (i) 7x^3y+9y x^3 (ii) 12 a^2b+3b a^2

Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)

Simplify the following 9x-[8-(3-7x)-3[5x-3(4-2x)}]

In each of the following find the value of 'a' : (i) 4x^(2)+ax+9=(2x+3)^(2) (ii) 9x^(2)+(7a-5)x+25=(3x+5)^(2)

Simplify : (3x^(2))^(-3)xx(x^(9))^((2)/(3))

In each of the following find the value of 'a' 9x^(2) + (7a-5)x + 25 = (3x + 5)^(2)