Home
Class 9
MATHS
Simplify using following identiy: (a +...

Simplify using following identiy:
`(a +- b) (a^(2) ab + b^(2)) = a^(3) +- b^(3)`
`((a)/(3)-3b) ((a^(2))/(9) + ab + 9b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{a}{3} - 3b\right) \left(\frac{a^2}{9} + ab + 9b^2\right)\) using the identity \((a - b)(a^2 + ab + b^2) = a^3 - b^3\), we will follow these steps: ### Step 1: Identify \(a\) and \(b\) In our case, we can identify: - \(a = \frac{a}{3}\) - \(b = 3b\) ### Step 2: Rewrite the expression using the identity According to the identity, we can rewrite the expression: \[ \left(\frac{a}{3} - 3b\right) \left(\frac{a^2}{9} + ab + 9b^2\right) = \left(\frac{a}{3}\right)^3 - (3b)^3 \] ### Step 3: Calculate \(\left(\frac{a}{3}\right)^3\) Calculating \(\left(\frac{a}{3}\right)^3\): \[ \left(\frac{a}{3}\right)^3 = \frac{a^3}{27} \] ### Step 4: Calculate \((3b)^3\) Calculating \((3b)^3\): \[ (3b)^3 = 27b^3 \] ### Step 5: Substitute back into the identity Now substituting back into the identity: \[ \left(\frac{a}{3} - 3b\right) \left(\frac{a^2}{9} + ab + 9b^2\right) = \frac{a^3}{27} - 27b^3 \] ### Final Answer Thus, the simplified form of the given expression is: \[ \frac{a^3}{27} - 27b^3 \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify using following identiy: (a +- b) (a^(2) ab + b^(2)) = a^(3) +- b^(3) (2x + 3y) (4x^(2) - 6xy + 9y^(2))

Simplify using following identiy: (a +- b) (a^(2) ab + b^(2)) = a^(3) +- b^(3) (3x- (5)/(x)) (9x^(2) + 15+ (25)/(x^(2)))

Subtract : a^(2) + ab + b^(2) from 4a^(2) - 3ab + 2b^(2)

Factorise : a^(3) + 3a^(2)b + 3ab^(2) + 2b^(3) .

If a^(2) +b^(2) = 13 and ab= 6 find: 3(a+b) ^(2) - 2(a-b)^(2)

Factorise : 4a^(2)b - 9b^(3)

Factorise : 3a^(2) b - 12 a^(2) - 9b + 36

If a + b= 9 and ab = -22 , find : a^(2)- b^(2)

If a+ b = 4 and ab =3 , find (1)/(b^(2)) + (1)/(a^(2))

Divide : 18a^(3)b^(2) - 27 a^(2)b^(3) +9ab^(2) by 3ab