Home
Class 9
MATHS
Using suitable identity, evaluate: (10...

Using suitable identity, evaluate:
`(104)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( (104)^3 \) using a suitable identity, we can follow these steps: ### Step 1: Rewrite the expression We can express \( 104 \) as \( 100 + 4 \). Therefore, we rewrite the expression as: \[ (104)^3 = (100 + 4)^3 \] ### Step 2: Apply the identity We will use the binomial expansion formula for \( (x + y)^3 \), which is given by: \[ (x + y)^3 = x^3 + y^3 + 3x^2y + 3xy^2 \] In our case, \( x = 100 \) and \( y = 4 \). ### Step 3: Calculate each term 1. Calculate \( x^3 \): \[ 100^3 = 1000000 \] 2. Calculate \( y^3 \): \[ 4^3 = 64 \] 3. Calculate \( 3x^2y \): \[ 3 \cdot (100^2) \cdot 4 = 3 \cdot 10000 \cdot 4 = 120000 \] 4. Calculate \( 3xy^2 \): \[ 3 \cdot 100 \cdot (4^2) = 3 \cdot 100 \cdot 16 = 4800 \] ### Step 4: Combine all the terms Now we add all the calculated terms together: \[ 1000000 + 64 + 120000 + 4800 \] ### Step 5: Perform the addition 1. First, add \( 1000000 + 120000 \): \[ 1000000 + 120000 = 1120000 \] 2. Next, add \( 1120000 + 4800 \): \[ 1120000 + 4800 = 1124800 \] 3. Finally, add \( 1124800 + 64 \): \[ 1124800 + 64 = 1124864 \] Thus, the final result is: \[ (104)^3 = 1124864 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Using suitable identity, evaluate: (97)^(3)

Using suitable identity , evaluate the following (i) 103^(3) (ii) 101xx102 (iii) 999^(2)

Use identities to evaluate: (101)^(2)

Use identities to evaluate: (502)^(2)

Use identities to evaluate: (97)^(2)

Evaluate each of the following using suitable identities:(i) (104)^3 (ii) (999)^3

Use identities to evaluate: (998)^(2)

Evaluate the following using suitable identities: (i) (99)^(3) \ (ii) (102)^3 \ (iii)(998)^3

Use identities the evaluate : (i) (101)^(2) (ii) (998)^(2)

If y=1, by using an identity find the value: (5y+(15)/y)(25 y^2-75+(225)/(y^2))