Home
Class 9
MATHS
Using suitable identity, evaluate: (97...

Using suitable identity, evaluate:
`(97)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( 97^3 \) using a suitable identity, we can express \( 97 \) as \( 100 - 3 \). We will then use the binomial expansion formula for \( (x - y)^3 \). ### Step-by-Step Solution: 1. **Rewrite the expression**: \[ 97^3 = (100 - 3)^3 \] 2. **Apply the binomial expansion formula**: The formula for \( (x - y)^3 \) is given by: \[ x^3 - 3x^2y + 3xy^2 - y^3 \] Here, \( x = 100 \) and \( y = 3 \). 3. **Substituting the values into the formula**: \[ (100 - 3)^3 = 100^3 - 3 \cdot 100^2 \cdot 3 + 3 \cdot 100 \cdot 3^2 - 3^3 \] 4. **Calculate each term**: - \( 100^3 = 1000000 \) - \( 3 \cdot 100^2 \cdot 3 = 3 \cdot 10000 \cdot 3 = 90000 \) - \( 3 \cdot 100 \cdot 3^2 = 3 \cdot 100 \cdot 9 = 2700 \) - \( 3^3 = 27 \) 5. **Combine the terms**: \[ 97^3 = 1000000 - 90000 + 2700 - 27 \] 6. **Perform the calculations step-by-step**: - First, calculate \( 1000000 - 90000 = 910000 \) - Then, \( 910000 + 2700 = 912700 \) - Finally, \( 912700 - 27 = 912673 \) Thus, the value of \( 97^3 \) is: \[ \boxed{912673} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Using suitable identity, evaluate: (104)^(3)

Use identities to evaluate: (97)^(2)

Using suitable identity , evaluate the following (i) 103^(3) (ii) 101xx102 (iii) 999^(2)

Use identities to evaluate: (998)^(2)

Evaluate the following using suitable identities: (i) (99)^(3) \ (ii) (102)^3 \ (iii)(998)^3

Use identities to evaluate: (502)^(2)

Use identities to evaluate: (101)^(2)

Evaluate each of the following using suitable identities:(i) (104)^3 (ii) (999)^3

Evaluate: ^100C_97

Use identities the evaluate : (i) (101)^(2) (ii) (998)^(2)