Home
Class 9
MATHS
Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - ...

Simplify: `((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3}{(x - y)^3 + (y - z)^3 + (z - x)^3}, \] we can follow these steps: ### Step 1: Identify the terms in the numerator and denominator The numerator consists of three cubes: - \( (x^2 - y^2)^3 \) - \( (y^2 - z^2)^3 \) - \( (z^2 - x^2)^3 \) The denominator also consists of three cubes: - \( (x - y)^3 \) - \( (y - z)^3 \) - \( (z - x)^3 \) ### Step 2: Use the identity for sums of cubes We can apply the identity for the sum of cubes, which states that if \( a + b + c = 0 \), then \[ a^3 + b^3 + c^3 = 3abc. \] ### Step 3: Check if the sum of the terms in the numerator equals zero Let: - \( a = x^2 - y^2 \) - \( b = y^2 - z^2 \) - \( c = z^2 - x^2 \) Calculating \( a + b + c \): \[ (x^2 - y^2) + (y^2 - z^2) + (z^2 - x^2) = 0. \] Since \( a + b + c = 0 \), we can use the identity: \[ (x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3 = 3(x^2 - y^2)(y^2 - z^2)(z^2 - x^2). \] ### Step 4: Check if the sum of the terms in the denominator equals zero Let: - \( p = x - y \) - \( q = y - z \) - \( r = z - x \) Calculating \( p + q + r \): \[ (x - y) + (y - z) + (z - x) = 0. \] Since \( p + q + r = 0 \), we can use the identity: \[ (x - y)^3 + (y - z)^3 + (z - x)^3 = 3(x - y)(y - z)(z - x). \] ### Step 5: Substitute back into the expression Now substituting back into the original expression, we have: \[ \frac{3(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)}{3(x - y)(y - z)(z - x)}. \] ### Step 6: Cancel the common factor The 3s in the numerator and denominator cancel out: \[ \frac{(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)}{(x - y)(y - z)(z - x)}. \] ### Step 7: Factor the differences of squares Using the difference of squares, we can rewrite \( x^2 - y^2 \) as \( (x - y)(x + y) \), and similarly for the other terms: \[ = \frac{(x - y)(x + y)(y - z)(y + z)(z - x)(z + x)}{(x - y)(y - z)(z - x)}. \] ### Step 8: Cancel the common factors The common factors \( (x - y) \), \( (y - z) \), and \( (z - x) \) in the numerator and denominator cancel out: \[ = (x + y)(y + z)(z + x). \] ### Final Answer Thus, the simplified expression is: \[ (x + y)(y + z)(z + x). \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| .Then Delta_(1)Delta_(2) is equal to

Verify that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]

Simplify: (x+y-2z)^2-x^2-y^2-3z^2+4x y

If x+y+z=xyz , prove that: a) (3x-x^(3))/(1-3x^(2))+(3y-y^(3))/(1-3y^(2))+(3z-z^(3))/(1-3z^(2))= (3x-x^(3))/(1-3x^(2)).(3y-y^(3))/(1-3y^(2)).(3z-z^(3))/(1-3z^(2)) b) (x+y)/(1-xy) + (y+z)/(1-yz)+(z+x)/(1-zx)= (x+y)/(1-xy) .(y+z)/(1-yz).(z+x)/(1-zx)

Factorize : (x-2y)^3+(2y-3z)^3+(3z-x)^3

Factorize : (x-2y)^3+(2y-3z)^3+(3z-x)^3

Factorize : (x-2y)^3+(2y-3z)^3+(3z-x)^3

Simplify : (3y + 4z)(3y - 4z) + (2y + 7z)(y+z)

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

Factorize: (3x-2y)^3+(2y-4z)^3+(4z-3x)^3