Home
Class 9
MATHS
Evaluate: (0.8 xx 0.8 xx 0.8 + 0.5 xx 0....

Evaluate: `(0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5)/(0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx 0.5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((0.8 \times 0.8 \times 0.8 + 0.5 \times 0.5 \times 0.5) / (0.8 \times 0.8 - 0.8 \times 0.5 + 0.5 \times 0.5)\), we can follow these steps: ### Step 1: Substitute Variables Let \( A = 0.8 \) and \( B = 0.5 \). This simplifies our expression to: \[ \frac{A^3 + B^3}{A^2 - AB + B^2} \] ### Step 2: Apply the Identity for \( A^3 + B^3 \) We know that \( A^3 + B^3 \) can be factored using the identity: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] Using this identity, we can rewrite our expression: \[ \frac{(A + B)(A^2 - AB + B^2)}{A^2 - AB + B^2} \] ### Step 3: Cancel the Common Terms Since \( A^2 - AB + B^2 \) appears in both the numerator and the denominator, we can cancel it out (as long as it is not zero): \[ A + B \] ### Step 4: Substitute Back the Values Now substitute back the values of \( A \) and \( B \): \[ A + B = 0.8 + 0.5 = 1.3 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1.3} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate: (0.6 xx 0.6 xx 0.6- 0.3 xx 0.3 xx 0.3)/(0.6 xx 0.6 + 0.6 xx 0.3 + 0.3 xx 0.3) , using suitable identity

Evaluate: (1.2 xx 1.2 + 1.2 xx 0.3 + 0.3 xx 0.3)/(1.2 xx 1.2 xx 1.2- 0.3 xx 0.3 xx 0.3)

Evaluate: 14.7 + 0.84 div 0.3 - 2.4 xx 1.2 + 15.8

Evaluate : 32.9 - 75.5 div 2.5 + 16.1 xx 0.3 + 4.5

Find: (i) 2.5 xx 0.3 (ii) 0.1 xx 51.7 (iii) 0.2 xx 316.8 (iv) 1.3 xx 3.1 (v) 0.5 xx 0.05 (vi) 11.2 xx 0.15 (vii) 1.07 xx 0.02 (viii) 10.05 xx 1.05 (ix) 101.01 xx 0.01 (x) 100.01 xx 1.1

Multiply : 0.8xx10

0. 012xx0. 15= (a) 0.8 (b) 0.08 (c) 0.008 (d) 0.0018

Evaluate: 32.5 + 12 . 43 xx 0.2 + 16.6 div 0.02 - 4. 07

Evaluate : sqrt((0.5)^(3) xx 6 xx 3^(5))

Find the number from each of the following expanded forms : , (a) 8 xx 10^4 + 6 xx 10^3 + 0 xx 10^2 + 4 xx 10^1 + 5 xx 10^0 , (b) 4 xx 10^5 + 5 xx 10^3 + 3 xx 10^2 + 2 xx 10^0 , (c) 3 xx 10^4 + 7 xx 10^2 + 5 xx 10^0