Home
Class 9
MATHS
Evaluate: (1.2 xx 1.2 + 1.2 xx 0.3 + 0.3...

Evaluate: `(1.2 xx 1.2 + 1.2 xx 0.3 + 0.3 xx 0.3)/(1.2 xx 1.2 xx 1.2- 0.3 xx 0.3 xx 0.3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((1.2 \times 1.2 + 1.2 \times 0.3 + 0.3 \times 0.3)/(1.2 \times 1.2 \times 1.2 - 0.3 \times 0.3 \times 0.3)\), we can follow these steps: ### Step 1: Define Variables Let \( A = 1.2 \) and \( B = 0.3 \). This allows us to rewrite the expression in terms of \( A \) and \( B \). ### Step 2: Rewrite the Expression The expression can be rewritten as: \[ \frac{A^2 + AB + B^2}{A^3 - B^3} \] ### Step 3: Use the Identity for \( A^3 - B^3 \) Recall the identity: \[ A^3 - B^3 = (A - B)(A^2 + AB + B^2) \] Using this identity, we can substitute \( A^3 - B^3 \) in our expression: \[ \frac{A^2 + AB + B^2}{(A - B)(A^2 + AB + B^2)} \] ### Step 4: Simplify the Expression The \( A^2 + AB + B^2 \) in the numerator and denominator cancels out, leaving us with: \[ \frac{1}{A - B} \] ### Step 5: Substitute Back the Values of \( A \) and \( B \) Now we substitute back the values of \( A \) and \( B \): \[ A - B = 1.2 - 0.3 = 0.9 \] Thus, we have: \[ \frac{1}{0.9} \] ### Step 6: Simplify the Fraction To simplify \( \frac{1}{0.9} \): \[ \frac{1}{0.9} = \frac{10}{9} \] ### Final Answer Therefore, the value of the expression is: \[ \frac{10}{9} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : 1.2 xx 2.3 xx 0.4

Evaluate: (0.6 xx 0.6 xx 0.6- 0.3 xx 0.3 xx 0.3)/(0.6 xx 0.6 + 0.6 xx 0.3 + 0.3 xx 0.3) , using suitable identity

Simplify: (1. 2\ xx\ 1. 2\ xx\ 1. 2-0. 2\ xx\ 0. 2\ xx\ 0. 2)/(1. 2\ xx\ 1. 2+1. 2\ xx\ 0. 2+0. 2\ xx\ 0. 2)

Evaluate the 1.4xx2.3xx0.02

Evaluate : 32.9 - 75.5 div 2.5 + 16.1 xx 0.3 + 4.5

Evaluate: 14.7 + 0.84 div 0.3 - 2.4 xx 1.2 + 15.8

Find: (i) 2.5 xx 0.3 (ii) 0.1 xx 51.7 (iii) 0.2 xx 316.8 (iv) 1.3 xx 3.1 (v) 0.5 xx 0.05 (vi) 11.2 xx 0.15 (vii) 1.07 xx 0.02 (viii) 10.05 xx 1.05 (ix) 101.01 xx 0.01 (x) 100.01 xx 1.1

Evaluate the 3.6xx1.4xx0.7

Show that (1 xx 2^(2) + 2 xx 3^(2) + . . . + n xx ( n + 1) ^(2))/( 1 ^(2) xx 2 + 2^(2) xx 3 + . . . + n^(2) xx ( n + 1) ) = ( 3 n + 5)/( 3 n + 1 )

Find the number from each of the following expanded forms : , (a) 8 xx 10^4 + 6 xx 10^3 + 0 xx 10^2 + 4 xx 10^1 + 5 xx 10^0 , (b) 4 xx 10^5 + 5 xx 10^3 + 3 xx 10^2 + 2 xx 10^0 , (c) 3 xx 10^4 + 7 xx 10^2 + 5 xx 10^0