Home
Class 9
MATHS
If x+ 5y= 10, find the value of x^(3) + ...

If `x+ 5y= 10`, find the value of `x^(3) + 125y^(3) + 150xy - 1000`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + 125y^3 + 150xy - 1000 \) given that \( x + 5y = 10 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ x + 5y = 10 \] 2. **Cube both sides of the equation**: \[ (x + 5y)^3 = 10^3 \] This simplifies to: \[ (x + 5y)^3 = 1000 \] 3. **Use the binomial expansion formula**: The formula for \( (a + b)^3 \) is: \[ a^3 + b^3 + 3ab(a + b) \] Here, let \( a = x \) and \( b = 5y \). Therefore, we have: \[ x^3 + (5y)^3 + 3(x)(5y)(x + 5y) = 1000 \] 4. **Calculate \( (5y)^3 \)**: \[ (5y)^3 = 125y^3 \] So the equation becomes: \[ x^3 + 125y^3 + 15xy(x + 5y) = 1000 \] 5. **Substitute \( x + 5y \) with 10**: Since \( x + 5y = 10 \), we can substitute this into the equation: \[ x^3 + 125y^3 + 15xy(10) = 1000 \] This simplifies to: \[ x^3 + 125y^3 + 150xy = 1000 \] 6. **Rearranging the equation**: Now, we need to find \( x^3 + 125y^3 + 150xy - 1000 \): \[ x^3 + 125y^3 + 150xy - 1000 = 0 \] ### Final Answer: Thus, the value of \( x^3 + 125y^3 + 150xy - 1000 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If 2x-3y=10 and xy=16 , find the value of 8x^(3)-27y^(3) .

If x=2 and y=5 find the values of : 2x+3y

If 2x- 3y= 10 and xy= 16 , find the value of 8x^(3)- 27y^(3)

If x=2 and y=5 find the values of : (3x)/(2y)

If x : y=2:3, find the value of (3x+2y):(2x+5y)dot

If x=2 and y=5 find the values of : 3x-4y

If 3x + 4y= 16 and xy= 4 , find the value of 9x^(2) + 16y^(2)

If (x+y, 5) = (10, y-3), find the values of x and y.

If 2x + y = 23 and 4x - y = 19, find the values of x - 3y and 5y - 2x.

If 2x-3y=5 , what is the value of 4x^(2)-12xy+9y^(2) ?