Home
Class 9
MATHS
If x= 3 + 2 sqrt2, find (1)/(x)...

If `x= 3 + 2 sqrt2`, find
`(1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{x} \) where \( x = 3 + 2\sqrt{2} \), we will rationalize the denominator. Here are the steps: ### Step 1: Write the expression for \( \frac{1}{x} \) We start with: \[ \frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} \] ### Step 2: Rationalize the denominator To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( 3 - 2\sqrt{2} \): \[ \frac{1}{3 + 2\sqrt{2}} \cdot \frac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} = \frac{3 - 2\sqrt{2}}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})} \] ### Step 3: Simplify the denominator using the difference of squares Now we simplify the denominator using the difference of squares formula \( a^2 - b^2 \): \[ (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 \] Calculating each part: \[ 3^2 = 9 \quad \text{and} \quad (2\sqrt{2})^2 = 4 \cdot 2 = 8 \] So, we have: \[ 9 - 8 = 1 \] ### Step 4: Write the final expression Now substituting back into our expression: \[ \frac{3 - 2\sqrt{2}}{1} = 3 - 2\sqrt{2} \] ### Final Answer Thus, the value of \( \frac{1}{x} \) is: \[ \frac{1}{x} = 3 - 2\sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x= 3 + 2 sqrt2 , find x- (1)/(x)

If x= 3 + 2 sqrt2 , find (x- (1)/(x))^(3)

If x= 3 + 2 sqrt2 , find x^(3)- (1)/(x^(3))

If x=3+2sqrt(2) , find : (i) (1)/(x) (ii) x-(1)/(x) (iii) (x-(1)/(x))^(3) (iv)x^(3)-(1)/(x^(3))

If x= 2sqrt(3)+2sqrt(2) find : (1)/(x)

If x = 3 + sqrt7 , find x^2 + 1/x^2

If x = 3 + sqrt8 find x^2 + 1/x^2

if x = 2 + sqrt3 , find (x + 1/x)^3

If x= 2sqrt(3)+2sqrt(2) find : x+(1)/(x)

If x=3+2sqrt(2) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)-(1)/(x^(2))