Home
Class 9
MATHS
If x= 3 + 2 sqrt2, find x- (1)/(x)...

If `x= 3 + 2 sqrt2`, find
`x- (1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = 3 + 2\sqrt{2} \) and we need to find \( x - \frac{1}{x} \), we can follow these steps: ### Step 1: Find \( \frac{1}{x} \) We start with the expression for \( x \): \[ x = 3 + 2\sqrt{2} \] To find \( \frac{1}{x} \), we write: \[ \frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} \] To simplify this, we will rationalize the denominator. ### Step 2: Rationalize the Denominator We multiply the numerator and the denominator by the conjugate of the denominator, which is \( 3 - 2\sqrt{2} \): \[ \frac{1}{x} = \frac{1 \cdot (3 - 2\sqrt{2})}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})} \] Calculating the denominator using the difference of squares: \[ (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 = 9 - 8 = 1 \] Thus, we have: \[ \frac{1}{x} = 3 - 2\sqrt{2} \] ### Step 3: Substitute \( \frac{1}{x} \) into the Expression Now we substitute \( \frac{1}{x} \) back into the expression \( x - \frac{1}{x} \): \[ x - \frac{1}{x} = (3 + 2\sqrt{2}) - (3 - 2\sqrt{2}) \] ### Step 4: Simplify the Expression Now simplify the expression: \[ x - \frac{1}{x} = 3 + 2\sqrt{2} - 3 + 2\sqrt{2} \] The \( 3 \) cancels out: \[ x - \frac{1}{x} = 2\sqrt{2} + 2\sqrt{2} = 4\sqrt{2} \] ### Final Answer Thus, the final answer is: \[ x - \frac{1}{x} = 4\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x= 3 + 2 sqrt2 , find x^(3)- (1)/(x^(3))

If x= 3 + 2 sqrt2 , find (1)/(x)

If x=3+2sqrt(2) , find : (i) (1)/(x) (ii) x-(1)/(x) (iii) (x-(1)/(x))^(3) (iv)x^(3)-(1)/(x^(3))

If x= 2sqrt(3)+2sqrt(2) find : (1)/(x)

If x= 2sqrt(3)+2sqrt(2) find : x+(1)/(x)

If x = 3 + sqrt7 , find x^2 + 1/x^2

If x= 2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)

If x=3+2sqrt(2) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)-(1)/(x^(2))

If x = 3 + sqrt8 find x^2 + 1/x^2

if x = 2 + sqrt3 , find (x + 1/x)^3