Home
Class 9
MATHS
If x= 3 + 2 sqrt2, find (x- (1)/(x))^(...

If `x= 3 + 2 sqrt2`, find
`(x- (1)/(x))^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = 3 + 2\sqrt{2} \) and we need to find \( (x - \frac{1}{x})^3 \), we can follow these steps: ### Step 1: Find \( \frac{1}{x} \) Given \( x = 3 + 2\sqrt{2} \), we need to find \( \frac{1}{x} \). \[ \frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} \] To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( 3 - 2\sqrt{2} \): \[ \frac{1}{x} = \frac{1 \cdot (3 - 2\sqrt{2})}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})} \] ### Step 2: Simplify the Denominator Now, we simplify the denominator using the difference of squares formula \( a^2 - b^2 \): \[ (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 = 9 - 8 = 1 \] Thus, we have: \[ \frac{1}{x} = 3 - 2\sqrt{2} \] ### Step 3: Calculate \( x - \frac{1}{x} \) Now we can find \( x - \frac{1}{x} \): \[ x - \frac{1}{x} = (3 + 2\sqrt{2}) - (3 - 2\sqrt{2}) \] ### Step 4: Simplify the Expression Simplifying the above expression: \[ x - \frac{1}{x} = 3 + 2\sqrt{2} - 3 + 2\sqrt{2} = 4\sqrt{2} \] ### Step 5: Calculate \( (x - \frac{1}{x})^3 \) Now we need to find \( (4\sqrt{2})^3 \): \[ (4\sqrt{2})^3 = 4^3 \cdot (\sqrt{2})^3 = 64 \cdot 2\sqrt{2} = 128\sqrt{2} \] ### Final Answer Thus, the final answer is: \[ (x - \frac{1}{x})^3 = 128\sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x= 3 + 2 sqrt2 , find x^(3)- (1)/(x^(3))

If x= 3 + 2 sqrt2 , find (1)/(x)

if x = 2 + sqrt3 , find (x + 1/x)^3

If x= 2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)

If x= 2sqrt(3)+2sqrt(2) find : x+(1)/(x)

If x=3+2sqrt(2) , find : (i) (1)/(x) (ii) x-(1)/(x) (iii) (x-(1)/(x))^(3) (iv)x^(3)-(1)/(x^(3))

If x= 2sqrt(3)+2sqrt(2) find : (1)/(x)

If x = 3 + sqrt7 , find x^2 + 1/x^2

If x = 3 + sqrt8 find x^2 + 1/x^2

If x =1 -sqrt(2) find the value of (x-(1)/(x))^(3)