Home
Class 9
MATHS
If x= 3 + 2 sqrt2, find x^(3)- (1)/(x^...

If `x= 3 + 2 sqrt2`, find
`x^(3)- (1)/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x^3 - \frac{1}{x^3} \) where \( x = 3 + 2\sqrt{2} \), we will follow these steps: ### Step 1: Find \( \frac{1}{x} \) We start by calculating \( \frac{1}{x} \) to help us later in finding \( x^3 - \frac{1}{x^3} \). \[ \frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} \] To rationalize the denominator, we multiply the numerator and the denominator by the conjugate \( 3 - 2\sqrt{2} \): \[ \frac{1}{x} = \frac{1 \cdot (3 - 2\sqrt{2})}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})} \] Calculating the denominator: \[ (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 = 9 - 8 = 1 \] So we have: \[ \frac{1}{x} = 3 - 2\sqrt{2} \] ### Step 2: Calculate \( x - \frac{1}{x} \) Now we can find \( x - \frac{1}{x} \): \[ x - \frac{1}{x} = (3 + 2\sqrt{2}) - (3 - 2\sqrt{2}) = 2\sqrt{2} + 2\sqrt{2} = 4\sqrt{2} \] ### Step 3: Use the identity for \( x^3 - \frac{1}{x^3} \) We will use the identity: \[ x^3 - \frac{1}{x^3} = \left( x - \frac{1}{x} \right)^3 + 3\left( x - \frac{1}{x} \right) \] Substituting \( x - \frac{1}{x} = 4\sqrt{2} \): \[ x^3 - \frac{1}{x^3} = (4\sqrt{2})^3 + 3(4\sqrt{2}) \] ### Step 4: Calculate \( (4\sqrt{2})^3 \) Calculating \( (4\sqrt{2})^3 \): \[ (4\sqrt{2})^3 = 4^3 \cdot (\sqrt{2})^3 = 64 \cdot 2\sqrt{2} = 128\sqrt{2} \] ### Step 5: Calculate \( 3(4\sqrt{2}) \) Calculating \( 3(4\sqrt{2}) \): \[ 3(4\sqrt{2}) = 12\sqrt{2} \] ### Step 6: Combine the results Now we combine the results: \[ x^3 - \frac{1}{x^3} = 128\sqrt{2} + 12\sqrt{2} = 140\sqrt{2} \] ### Final Answer Thus, the final answer is: \[ x^3 - \frac{1}{x^3} = 140\sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x= 3 + 2 sqrt2 , find (x- (1)/(x))^(3)

If x= 3 + 2 sqrt2 , find (1)/(x)

If x= 3 + 2 sqrt2 , find x- (1)/(x)

If x=3+2sqrt(2) , find : (i) (1)/(x) (ii) x-(1)/(x) (iii) (x-(1)/(x))^(3) (iv)x^(3)-(1)/(x^(3))

If x = 3 + sqrt8 find x^2 + 1/x^2

if x = 2 - sqrt3 , find x^2 + 1/x^2

If x = 3 + sqrt7 , find x^2 + 1/x^2

If x = sqrt(3)- sqrt(2) find the value of x^(3)+ (1)/(x^(3))

If x= 2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)

If x= 2sqrt(3)+2sqrt(2) find : x+(1)/(x)