Home
Class 9
MATHS
If a +b= 11 and a^(2) + b^(2) = 65, find...

If `a +b= 11 and a^(2) + b^(2) = 65`, find `a^(3) + b^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^3 + b^3 \) given \( a + b = 11 \) and \( a^2 + b^2 = 65 \), we can use the identity: \[ a^3 + b^3 = (a + b)(a^2 + b^2 - ab) \] ### Step 1: Find \( ab \) We start with the equation \( a + b = 11 \). To find \( ab \), we will square both sides: \[ (a + b)^2 = 11^2 \] This expands to: \[ a^2 + 2ab + b^2 = 121 \] We know \( a^2 + b^2 = 65 \), so we can substitute this into the equation: \[ 65 + 2ab = 121 \] ### Step 2: Solve for \( ab \) Now, we can isolate \( 2ab \): \[ 2ab = 121 - 65 \] \[ 2ab = 56 \] Dividing both sides by 2 gives us: \[ ab = 28 \] ### Step 3: Substitute values into the identity Now we have \( a + b = 11 \), \( a^2 + b^2 = 65 \), and \( ab = 28 \). We can substitute these values into the identity for \( a^3 + b^3 \): \[ a^3 + b^3 = (a + b)(a^2 + b^2 - ab) \] Substituting the known values: \[ a^3 + b^3 = 11(65 - 28) \] ### Step 4: Calculate \( a^2 + b^2 - ab \) Now we calculate \( 65 - 28 \): \[ 65 - 28 = 37 \] ### Step 5: Final calculation Now we can calculate \( a^3 + b^3 \): \[ a^3 + b^3 = 11 \times 37 \] Calculating this gives: \[ a^3 + b^3 = 407 \] ### Final Answer Thus, the value of \( a^3 + b^3 \) is \( \boxed{407} \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

(ii) If a-b=3 and a^2 + b^2 = 29 , find ab .

If a^(2) + b^(2) = 10 and ab = 3 , find : (ii) a+b

If a^(2) + b^(2) = 10 and ab = 3 , find : (i) a-b

If a+b=10 and a^2+b^2=58 , find the value of a^3+b^3

If a+b=10\ and a^2+b^2=58 , find the value of a^3+b^3

If a+b+c=15 and a^2+b^2+c^2=83 , find the value of a^3+b^3+c^3-3abc

If a^(2) +b^(2) = 13 and ab= 6 find: 3(a+b) ^(2) - 2(a-b)^(2)

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of a^3+b^3+c^3-3a b c

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of a^3+b^3+c^3-3a b c

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc