Home
Class 9
MATHS
Express each of the following in exponen...

Express each of the following in exponential form :
(i) `log_(8) 0.125 = -1`
(ii) `log_(10) 0.01 = -2`
(iii) `log_(a) A = x`
(iv) `log_(10)1 = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To express each of the given logarithmic equations in exponential form, we will use the property of logarithms which states that if \( \log_a b = c \), then it can be expressed as \( a^c = b \). Let's solve each part step by step: ### (i) \( \log_{8} 0.125 = -1 \) 1. **Identify the base, the argument, and the result**: Here, the base \( a = 8 \), the argument \( b = 0.125 \), and the result \( c = -1 \). 2. **Apply the logarithmic identity**: According to the property, we can rewrite this as: \[ 8^{-1} = 0.125 \] 3. **Final exponential form**: Thus, the exponential form is: \[ 8^{-1} = 0.125 \] ### (ii) \( \log_{10} 0.01 = -2 \) 1. **Identify the base, the argument, and the result**: Here, \( a = 10 \), \( b = 0.01 \), and \( c = -2 \). 2. **Apply the logarithmic identity**: We can rewrite this as: \[ 10^{-2} = 0.01 \] 3. **Final exponential form**: Thus, the exponential form is: \[ 10^{-2} = 0.01 \] ### (iii) \( \log_{a} A = x \) 1. **Identify the base, the argument, and the result**: Here, \( a = a \), \( b = A \), and \( c = x \). 2. **Apply the logarithmic identity**: We can rewrite this as: \[ a^{x} = A \] 3. **Final exponential form**: Thus, the exponential form is: \[ a^{x} = A \] ### (iv) \( \log_{10} 1 = 0 \) 1. **Identify the base, the argument, and the result**: Here, \( a = 10 \), \( b = 1 \), and \( c = 0 \). 2. **Apply the logarithmic identity**: We can rewrite this as: \[ 10^{0} = 1 \] 3. **Final exponential form**: Thus, the exponential form is: \[ 10^{0} = 1 \] ### Summary of Exponential Forms: 1. \( 8^{-1} = 0.125 \) 2. \( 10^{-2} = 0.01 \) 3. \( a^{x} = A \) 4. \( 10^{0} = 1 \)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Express the following in exponential form: a) log_(2)32=5 b) log_(sqrt(2))4=4 c) log_(10)0.01=-2

If log_(10)2 = a and log_(10) 3 = b , express each of the following in terms of 'a' and 'b' : (i) log 12 (ii) log 2.25 (iii) "log"_(2) (1)/(4) (iv) log 5.4 (v) log 60 (vi) "log 3" (1)/(8)

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

Express each of the following in a form free from logarithm : (i) 2 log x - log y = 1 (ii) 2 log x + 3 log y = log a (iii) a log x - b log y = 2 log 3

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

Given 2 log_(10) x + 1 = log_(10) 250 , find : (i) x (ii) log_(10) 2x

Write each of the following as single logarithm: (a) 1+ log_(2) 5" "(b) 2- log_(3) 7 (c) 2log_(10) x+3 log_(10) y - 5 log_(10) z

Evaluate : (i) log_(10) 0.01 (ii) log_(2) (1 div 8) (iii) log_(5)1 (iv) log_(5) 125 (v) log_(16)8 (vi) log_(0.5) 16

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

Evaluate : (i) log_(125) 625 - log_(16) 64 (ii) log_(16) 32 - log_(25) 125 + log_(9) 27 .