Home
Class 9
MATHS
State, true or false : (i) If log(10)x...

State, true or false :
(i) If `log_(10)x = a`, then `10^(x) = a`
(ii) If `x^(y) = z`, then `y = log_(z) x`.
(iii) `log_(2) 8 = 3 and log_(8) 2 = (1)/(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statements are true or false, we will analyze each statement one by one. ### Statement (i): **If `log_(10)x = a`, then `10^(x) = a`.** **Step 1:** Recall the definition of logarithms. If `log_b(a) = c`, then it means `b^c = a`. **Step 2:** In our case, we have `log_(10)x = a`. This means that `10^a = x`. **Step 3:** The statement claims that `10^x = a`. However, from our analysis, we found that `10^a = x`, not `10^x = a`. **Conclusion:** The statement is **False**. --- ### Statement (ii): **If `x^(y) = z`, then `y = log_(z) x`.** **Step 1:** Start with the equation `x^y = z`. **Step 2:** Taking logarithm on both sides, we have `log(z) = log(x^y)`. **Step 3:** Using the power rule of logarithms, we can rewrite this as `log(z) = y * log(x)`. **Step 4:** Rearranging gives us `y = log(z) / log(x)`. **Step 5:** By the change of base formula, we can express this as `y = log(x) base z`. **Conclusion:** The statement is **False**. --- ### Statement (iii): **`log_(2) 8 = 3 and log_(8) 2 = (1)/(3)`.** **Step 1:** Evaluate `log_(2) 8`. We know that `8 = 2^3`, so `log_(2) 8 = log_(2) (2^3)`. **Step 2:** Using the power rule, we find `log_(2) 8 = 3 * log_(2) 2 = 3 * 1 = 3`. **Step 3:** Now evaluate `log_(8) 2`. We can express `8` as `2^3`, so `log_(8) 2 = log_(2^3) 2`. **Step 4:** Using the change of base formula, we have `log_(8) 2 = log(2) / log(8) = log(2) / (3 * log(2)) = 1/3`. **Conclusion:** Both parts of the statement are **True**. --- ### Summary of Answers: 1. Statement (i): **False** 2. Statement (ii): **False** 3. Statement (iii): **True** ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find x, if : (i) log_(2) x = -2 (ii) log_(4) (x + 3) = 2 (iii) log_(x) 64 = (3)/(2)

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

Find x if 9^(1//log_(2)3) le log_(2) x le log_(8) 27

State, true or false : (i) log 1 xx log 1000 = 0 (ii) (log x)/(log y) = log x - log y (iii) If (log 25)/(log 5) = log x , then x = 2 (iv) log x xx log y = log x + log y

If log_(10)((x^(3) - y^(3))/ (x^(3)+y^(3))) = 2 , then (dy)/(dx)=

Prove that : log _ y^(x) . log _z^(y) . log _a^(z) = log _a ^(x)

Find x, if : (i) log_(3) x = 0 (ii) log_(x) 2 = -1 (iii) log_(9) 243 = x (iv) log_(5) (x - 7) = 1 (v) log_(4) 32 = x - 4 (vi) log_(7) (2x^(2) - 1) = 2

Given 2 log_(10) x + 1 = log_(10) 250 , find : (i) x (ii) log_(10) 2x

If x^(18)=y^(21)=z^(28) , then 3,3 log_(y)x,3log_(z)y,7log_(x)z are in