Home
Class 9
MATHS
Find x, if : (i) log(3) x = 0 (ii) l...

Find x, if :
(i) `log_(3) x = 0`
(ii) `log_(x) 2 = -1`
(iii) `log_(9) 243 = x`
(iv) `log_(5) (x - 7) = 1`
(v) `log_(4) 32 = x - 4`
(vi) `log_(7) (2x^(2) - 1) = 2`

Text Solution

Verified by Experts

The correct Answer is:
`{:(i.,1,ii.,(1)/(2),iii.,(5)/(2) = 2(1)/(2)),(iv.,12,v.,6(1)/(2),vi,5):}`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find x, if : (i) log_(2) x = -2 (ii) log_(4) (x + 3) = 2 (iii) log_(x) 64 = (3)/(2)

Find x, if : (i) log_(x) 625 = -4 (ii) log_(x) (5x - 6) = 2 .

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

Given 2 log_(10) x + 1 = log_(10) 250 , find : (i) x (ii) log_(10) 2x

Find x if 9^(1//log_(2)3) le log_(2) x le log_(8) 27

Find x if log_(2) log_(1//2) log_(3) x gt 0

Solve for x: a) log_(0.5)(x^(2)-5x+6) ge -1 , b) log_(1//3)(log_(4)(x^(2)-5)) gt 0

Solve for x : (i) (log 81)/(log 27) = x (ii) (log 128)/(log 32) = x (iii) (log 64)/(log 8) = log x (iv) (log 225)/(log 15) = log x

Given log_(x)25 - log_(x) 5 = 2 - "log"_(x) (1)/(125) , find x.