Home
Class 9
MATHS
Solve for x : (i) log(10) (x - 10) = 1...

Solve for x :
(i) `log_(10) (x - 10) = 1`
(ii) `log (x^(2) - 21) = 2`
(iii) `log(x - 2) + log(x + 2) = log 5`
(iv) `log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3`

Text Solution

Verified by Experts

The correct Answer is:
(i) 20
(ii) `+- 11`
(iii) 3
(iv) 13
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve for x : log(x - 1) + log(x + 1) = log_(2)1 .

Solve for x : (i) (log 81)/(log 27) = x (ii) (log 128)/(log 32) = x (iii) (log 64)/(log 8) = log x (iv) (log 225)/(log 15) = log x

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

Find x, if : (i) log_(2) x = -2 (ii) log_(4) (x + 3) = 2 (iii) log_(x) 64 = (3)/(2)

Find x, if : (i) log_(3) x = 0 (ii) log_(x) 2 = -1 (iii) log_(9) 243 = x (iv) log_(5) (x - 7) = 1 (v) log_(4) 32 = x - 4 (vi) log_(7) (2x^(2) - 1) = 2

State, true or false : (i) log 1 xx log 1000 = 0 (ii) (log x)/(log y) = log x - log y (iii) If (log 25)/(log 5) = log x , then x = 2 (iv) log x xx log y = log x + log y

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

Find x, if : 2 + log x = log 45 - log 2 + log 16 - 2 log 3.

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)