Home
Class 9
MATHS
Solve for x : (i) (log 81)/(log 27) = ...

Solve for x :
(i) `(log 81)/(log 27) = x`
(ii) `(log 128)/(log 32) = x`
(iii) `(log 64)/(log 8) = log x`
(iv) `(log 225)/(log 15) = log x`

Text Solution

Verified by Experts

The correct Answer is:
(i) `1 (1)/(3)`
(ii) 1.4
(iii) 100
(iv) 100
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

State, true or false : (i) log 1 xx log 1000 = 0 (ii) (log x)/(log y) = log x - log y (iii) If (log 25)/(log 5) = log x , then x = 2 (iv) log x xx log y = log x + log y

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

(log x)^(log x),x gt1

Solve for x : log(x - 1) + log(x + 1) = log_(2)1 .

Find x, if : (i) log_(2) x = -2 (ii) log_(4) (x + 3) = 2 (iii) log_(x) 64 = (3)/(2)

(i) Show that (log 9)/2 + 2 log 6 +(log 81)/4 - log 12 = 3 log 3 .

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

Find x, if : x - log 48 + 3 log 2 = (1)/(3) log 125 - log 3 .

Solve : 6((log)_x2-(log)_4x)+7=0.