Home
Class 9
MATHS
If x = (100)^(a), y = (10000)^(b) and z ...

If `x = (100)^(a), y = (10000)^(b) and z = (10)^(c)`, find `"log" (10 sqrt(y))/(x^(2)z^(3))` in terms of a, b and c.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \(\log_{10} \left( \frac{\sqrt{y}}{x^2 z^3} \right)\) in terms of \(a\), \(b\), and \(c\) where \(x = (100)^a\), \(y = (10000)^b\), and \(z = (10)^c\). ### Step-by-Step Solution: 1. **Express \(x\), \(y\), and \(z\) in terms of base 10:** - \(x = (100)^a = (10^2)^a = 10^{2a}\) - \(y = (10000)^b = (10^4)^b = 10^{4b}\) - \(z = (10)^c = 10^c\) 2. **Substitute \(x\), \(y\), and \(z\) into the expression:** \[ \log_{10} \left( \frac{\sqrt{y}}{x^2 z^3} \right) = \log_{10} \left( \frac{\sqrt{10^{4b}}}{(10^{2a})^2 (10^c)^3} \right) \] 3. **Simplify the expression:** - The square root of \(y\) is: \[ \sqrt{y} = \sqrt{10^{4b}} = 10^{2b} \] - The denominator \(x^2 z^3\) is: \[ x^2 = (10^{2a})^2 = 10^{4a}, \quad z^3 = (10^c)^3 = 10^{3c} \] - Therefore, the denominator becomes: \[ x^2 z^3 = 10^{4a} \cdot 10^{3c} = 10^{4a + 3c} \] 4. **Combine the numerator and denominator:** \[ \frac{\sqrt{y}}{x^2 z^3} = \frac{10^{2b}}{10^{4a + 3c}} = 10^{2b - (4a + 3c)} = 10^{2b - 4a - 3c} \] 5. **Apply the logarithm:** \[ \log_{10} \left( \frac{\sqrt{y}}{x^2 z^3} \right) = \log_{10} \left( 10^{2b - 4a - 3c} \right) \] 6. **Use the property of logarithms:** \[ \log_{10} \left( 10^{2b - 4a - 3c} \right) = 2b - 4a - 3c \] 7. **Final result:** \[ \log_{10} \left( \frac{\sqrt{y}}{x^2 z^3} \right) = 2b - 4a - 3c + 1 \] ### Final Expression: \[ \log_{10} \left( \frac{\sqrt{y}}{x^2 z^3} \right) = 1 + 2b - 4a - 3c \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . Write 10 ^(a) in terms of x.

If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c , find c in terms of x and y.

If log_(3) y = x and log_(2) z = x , " find " 72^(x) in terms of y and z.

If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z , express y in terms of x and z.

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : x - y +z

If (log)_3y=xa n d(log)_2z=x , find 72^x in terms of yand zdot

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : x + y + z

Given x = log_(10)12, y = log_(4)2 xx log_(10)9 and z = log_(10) 0.4 , find : (i) x - y - z (ii) 13^(x - y - z)

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : 2x - y - 3z