Home
Class 9
MATHS
If 3(log 5 - log 3) - (log 5 - 2 log 6) ...

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3(\log 5 - \log 3) - (\log 5 - 2 \log 6) = 2 - \log x \), we will follow these steps: ### Step 1: Expand the left side of the equation Start by distributing the terms in the left-hand side: \[ 3(\log 5 - \log 3) - (\log 5 - 2 \log 6) = 3 \log 5 - 3 \log 3 - \log 5 + 2 \log 6 \] ### Step 2: Combine like terms Now, combine the logarithmic terms: \[ (3 \log 5 - \log 5) + 2 \log 6 - 3 \log 3 = 2 \log 5 + 2 \log 6 - 3 \log 3 \] ### Step 3: Rewrite \( \log 6 \) We can express \( \log 6 \) in terms of \( \log 2 \) and \( \log 3 \): \[ \log 6 = \log(2 \cdot 3) = \log 2 + \log 3 \] Thus, \( 2 \log 6 = 2(\log 2 + \log 3) = 2 \log 2 + 2 \log 3 \). ### Step 4: Substitute back into the equation Substituting this back into our equation gives: \[ 2 \log 5 + 2 \log 2 + 2 \log 3 - 3 \log 3 = 2 \log 5 + 2 \log 2 - \log 3 \] ### Step 5: Set the equation equal to the right side Now we have: \[ 2 \log 5 + 2 \log 2 - \log 3 = 2 - \log x \] ### Step 6: Move \( \log x \) to the left side Rearranging gives: \[ 2 \log 5 + 2 \log 2 - \log 3 + \log x = 2 \] ### Step 7: Combine logarithms Using the property \( \log a + \log b = \log(ab) \): \[ \log(5^2) + \log(2^2) + \log x - \log 3 = 2 \] This simplifies to: \[ \log\left(\frac{25 \cdot 4 \cdot x}{3}\right) = 2 \] ### Step 8: Exponentiate to eliminate the logarithm Taking the antilogarithm gives: \[ \frac{25 \cdot 4 \cdot x}{3} = 10^2 \] This simplifies to: \[ \frac{100x}{3} = 100 \] ### Step 9: Solve for \( x \) Multiplying both sides by 3: \[ 100x = 300 \] Now, divide by 100: \[ x = 3 \] Thus, the value of \( x \) is \( \boxed{3} \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Given 3 (log 5 - log 3 ) - ( log 5 - 3 log 6 ) = 2- log m, find m.

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

State, true or false : (i) log 1 xx log 1000 = 0 (ii) (log x)/(log y) = log x - log y (iii) If (log 25)/(log 5) = log x , then x = 2 (iv) log x xx log y = log x + log y

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

Find x, if : 2 + log x = log 45 - log 2 + log 16 - 2 log 3.

Find x, if : x - log 48 + 3 log 2 = (1)/(3) log 125 - log 3 .

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32