Home
Class 9
MATHS
If log 27 = 1.431, find the value of : ...

If log 27 = 1.431, find the value of :
(i) log 9
(ii) log 300

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \log 9 \) and \( \log 300 \) given that \( \log 27 = 1.431 \). ### Step-by-Step Solution: **(i) Finding \( \log 9 \)** 1. **Express 27 in terms of 3**: We know that \( 27 = 3^3 \). Therefore, we can write: \[ \log 27 = \log(3^3) \] 2. **Apply the logarithmic property**: Using the property \( \log(a^b) = b \cdot \log a \), we have: \[ \log(3^3) = 3 \cdot \log 3 \] Thus, we can equate: \[ 3 \cdot \log 3 = 1.431 \] 3. **Solve for \( \log 3 \)**: Dividing both sides by 3 gives: \[ \log 3 = \frac{1.431}{3} = 0.477 \] 4. **Express 9 in terms of 3**: We know that \( 9 = 3^2 \). Therefore, we can write: \[ \log 9 = \log(3^2) \] 5. **Apply the logarithmic property again**: Using the same property: \[ \log(3^2) = 2 \cdot \log 3 \] 6. **Substitute the value of \( \log 3 \)**: Now substituting \( \log 3 = 0.477 \): \[ \log 9 = 2 \cdot 0.477 = 0.954 \] **Final answer for (i)**: \[ \log 9 = 0.954 \] --- **(ii) Finding \( \log 300 \)** 1. **Express 300 in terms of its factors**: We can express \( 300 \) as \( 300 = 3 \times 100 \). Thus, we can write: \[ \log 300 = \log(3 \times 100) \] 2. **Apply the logarithmic property for products**: Using the property \( \log(m \times n) = \log m + \log n \): \[ \log 300 = \log 3 + \log 100 \] 3. **Substitute the value of \( \log 3 \)**: We already found \( \log 3 = 0.477 \), so: \[ \log 300 = 0.477 + \log 100 \] 4. **Express 100 in terms of powers of 10**: We know that \( 100 = 10^2 \), so: \[ \log 100 = \log(10^2) \] 5. **Apply the logarithmic property again**: Using the property \( \log(a^b) = b \cdot \log a \): \[ \log(10^2) = 2 \cdot \log 10 \] 6. **Use the known value of \( \log 10 \)**: We know that \( \log 10 = 1 \): \[ \log 100 = 2 \cdot 1 = 2 \] 7. **Combine the results**: Now substituting back: \[ \log 300 = 0.477 + 2 = 2.477 \] **Final answer for (ii)**: \[ \log 300 = 2.477 \] --- ### Summary of Answers: - \( \log 9 = 0.954 \) - \( \log 300 = 2.477 \)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 6 (ii) log 5 (iii) log sqrt(24)

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 12 (ii) log 1.2 (iii) log 3.6 (iv) log 15 (v) log 25 (vi) (2)/(3) log 8

Find the value of : log _ 3 27

If log_(10) 8 = 0.90 , find the value of : (i) log_(10)4 (ii) log sqrt(32) (iii) log 0.125

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

Find the value of the following log_(9) 27

If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2p - q.

If log 4= 0.602 and log 27 = 1.431 , find : log 8