Home
Class 9
MATHS
Simplify : (i) log(a)^(3) - log a (i...

Simplify :
(i) `log(a)^(3) - log a`
(ii) `log(a)^(3) div log a`

Text Solution

Verified by Experts

The correct Answer is:
(i) 2 log a
(ii) 3
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : (i) log_(b)a xx log_(c)b xx log_(a)c (ii) log_(3) 8 div log_(9) 16 (iii) (log_(5)8)/(log_(25)16 xx log_(100)10)

Simplify: 2^((log)_3 5)-5^((log)_3 2)

If log_(10)2 = a and log_(10) 3 = b , express each of the following in terms of 'a' and 'b' : (i) log 12 (ii) log 2.25 (iii) "log"_(2) (1)/(4) (iv) log 5.4 (v) log 60 (vi) "log 3" (1)/(8)

Prove that : (i) (log a)^(2) - (log b)^(2) = log((a)/(b)).log(ab) (ii) If a log b + b log a - 1 = 0, then b^(a).a^(b) = 10

Simplify : log""(75)/( 16) - 2 log ""( 5)/(9) +log""( 32)/(243)

Find x, if : (i) log_(2) x = -2 (ii) log_(4) (x + 3) = 2 (iii) log_(x) 64 = (3)/(2)

Simplify : 2 log ""( 15)/(8) - log ""( 25)/( 162) +3 log ""( 4)/(9)

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 12 (ii) log 1.2 (iii) log 3.6 (iv) log 15 (v) log 25 (vi) (2)/(3) log 8

Express each of the following in a form free from logarithm : (i) 2 log x - log y = 1 (ii) 2 log x + 3 log y = log a (iii) a log x - b log y = 2 log 3

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3