Home
Class 9
MATHS
Prove that : (i) (log a)^(2) - (log b)^(...

Prove that : (i) `(log a)^(2) - (log b)^(2) = log((a)/(b)).log(ab)`
(ii) If a log b + b log a - 1 = 0, then `b^(a).a^(b) = 10`

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Prove that ((log)_a N)/((log)_(a b)N)=1+(log)_a b

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab

Prove that : (1)/( log _(a) ^(abc) )+(1)/(log_(b)^(abc) ) + (1)/( log _c^(abc)) =1

log_10⁡ a + log_10 ⁡b = log_10⁡ (a+b)

Prove that asqrt(log_a b)-bsqrt(log_b a)=0

Show that : log_(a)m div log_(ab)m = 1 + log_(a)b

If (3)/(2) log a + (2)/(3) log b - 1 = 0 , find the value of a^(9).b^(4) .

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

The value of (bc)^log(b/c)*(ca)^log(c/a)*(ab)^log(a/b) is

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .