Home
Class 9
MATHS
(i) If log(a + 1) = log(4a - 3) - log 3,...

(i) If log(a + 1) = log(4a - 3) - log 3, find a.
(ii) If 2 log y - log x - 3 = 0, express x in termss of y.
(iii) Prove that : `log_(10) 125 = 3(1 - log_(10)2)`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given questions step by step. ### Part (i) Given: \[ \log(a + 1) = \log(4a - 3) - \log 3 \] **Step 1:** Apply the property of logarithms that states \( \log A - \log B = \log \left(\frac{A}{B}\right) \). \[ \log(a + 1) = \log\left(\frac{4a - 3}{3}\right) \] **Step 2:** Since the logarithms are equal, we can equate the arguments. \[ a + 1 = \frac{4a - 3}{3} \] **Step 3:** Multiply both sides by 3 to eliminate the fraction. \[ 3(a + 1) = 4a - 3 \] \[ 3a + 3 = 4a - 3 \] **Step 4:** Rearrange the equation to isolate \(a\). \[ 3 + 3 = 4a - 3a \] \[ 6 = a \] **Final Answer for Part (i):** \[ a = 6 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Given 3 log x + (1)/(2) log y = 2 , express y in term of x.

If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z , express y in terms of x and z.

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

For relation 2 log y - log x - log ( y-1) =0

If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c , find c in terms of x and y.

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

State, true or false : (i) log 1 xx log 1000 = 0 (ii) (log x)/(log y) = log x - log y (iii) If (log 25)/(log 5) = log x , then x = 2 (iv) log x xx log y = log x + log y

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.