Home
Class 9
MATHS
Given log x = 2m - n, log y = n - 2m and...

Given log x = 2m - n, log y = n - 2m and log z = 3m - 2n, find in terms of m and n, the value of `"log" (x^(2)y^(3))/(z^(4))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log \left( \frac{x^2 y^3}{z^4} \right) \) in terms of \( m \) and \( n \) using the given logarithmic expressions for \( x \), \( y \), and \( z \). ### Step-by-Step Solution: 1. **Use the properties of logarithms**: We know that: \[ \log \left( \frac{a}{b} \right) = \log a - \log b \] and \[ \log (a^b) = b \cdot \log a \] Therefore, we can express \( \log \left( \frac{x^2 y^3}{z^4} \right) \) as: \[ \log \left( \frac{x^2 y^3}{z^4} \right) = \log (x^2) + \log (y^3) - \log (z^4) \] 2. **Apply the power rule**: Using the power rule, we rewrite the expression: \[ \log (x^2) = 2 \log x, \quad \log (y^3) = 3 \log y, \quad \log (z^4) = 4 \log z \] Thus, we have: \[ \log \left( \frac{x^2 y^3}{z^4} \right) = 2 \log x + 3 \log y - 4 \log z \] 3. **Substitute the given values**: We substitute the given values of \( \log x \), \( \log y \), and \( \log z \): - \( \log x = 2m - n \) - \( \log y = n - 2m \) - \( \log z = 3m - 2n \) Therefore: \[ \log \left( \frac{x^2 y^3}{z^4} \right) = 2(2m - n) + 3(n - 2m) - 4(3m - 2n) \] 4. **Expand and simplify**: Now, we expand each term: \[ = 4m - 2n + 3n - 6m - 12m + 8n \] Combine like terms: - For \( m \): \( 4m - 6m - 12m = -14m \) - For \( n \): \( -2n + 3n + 8n = 9n \) Thus, we have: \[ \log \left( \frac{x^2 y^3}{z^4} \right) = -14m + 9n \] ### Final Answer: The value of \( \log \left( \frac{x^2 y^3}{z^4} \right) \) in terms of \( m \) and \( n \) is: \[ \log \left( \frac{x^2 y^3}{z^4} \right) = -14m + 9n \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let log x= 2m - 3n and log y = 3n - 2m Find the value of log (x^(3) /y ^(2)) in terms of m and n.

If log_(3) y = x and log_(2) z = x , " find " 72^(x) in terms of y and z.

If (log)_3y=xa n d(log)_2z=x , find 72^x in terms of yand zdot

If (log)_3y=xa n d(log)_2z=x , find 72^x in terms of ya n dzdot

Given 3 (log 5 - log 3 ) - ( log 5 - 3 log 6 ) = 2- log m, find m.

Given log x = m + n and log y = m - n, express the value of "log" (10 x)/(y^(2)) in terms of m and n.

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If log_(7) 2 = m , then find log_(49) 28 in terms of m.

If log xy^(3) = m and log x ^(3) y ^(2) = p, " find " log (x^(2) -: y) in terms of m and p.